

PROFITEST MASTER IQ Series PROFITEST MTECH+, MPRO, MXTRA, SECULIFE IP DIN VDE 0100/IEC 60364-6 Testers

3-447-043-03 4/10.21

Testing of residual current devices (RCCBs)

- Measurement of contact voltage without tripping the RCCB. Contact voltage is measured with reference to nominal residual current using 1/3 of the nominal residual current value.
- Testing for N-PE reversal
- Tripping test with nominal residual current, trip time measurement
- Testing of equipment and RCCBs with rising residual current including indication of tripping current and contact voltage
- Testing of RCCBs with nominal current of $\frac{1}{2} \bullet I_{\Delta N}$, $1 \bullet I_{\Delta N}$, $2 \bullet I_{\Delta N}$, $(5 \bullet I_{\Delta N} \text{ to } 300 \text{ mA: Mpro/Mxtra/SECULIFE IP to 100 mA: Mtech+})$
- Intelligent ramp (PROFITEST MXTRA only): simultaneous measurement of breaking current I_{AN} and breaking time t_A
- Testing of selective SSRCDs, PRCDs (SCHUKOMAT, SIDOS or comparable), type G/R, type AC, type A, F; type B, B+ and type EV (exept MPRO)
- Testing of RCCBs which are suitable for pulsating residual direct current; testing is conducted with positive or negative half-waves.
- Creation of test sequences (IZYTRONIQ)
- Intelligent data transmission Bidirectional interface to DDS-CAD for electrical planning
- Simulation of operating states of electric vehicles at electric charging stations of different manufacturers (MTECH+ and MXTRA only)

Large Voltage and Frequency Ranges

A broad-range measuring device allows for use of the test instrument in all alternating and 3-phase electrical systems with voltages from 65 to 500 V and frequencies of 16 to 400 Hz.

Loop and Line Impedance Measurement

Measurement of loop and line impedance can be performed in the 65 to 500 V range. Conversion to short-circuit current is based on the respective nominal line voltage, insofar as the measured line voltage is within the specified range. **PROFITEST MASTER** measuring error is also taken into account for conversion. Outside of this range, short-circuit current is calculated on the basis of momentary line voltage and measured impedance.

Measurement of Insulation Resistance Using Nominal Voltage, with Variable or Rising Test Voltage

Insulation resistance is usually measured with a nominal voltages of 500, 250 or 100 V. A test voltage which deviates from nominal voltage, and lies within a range of 20/50 to 1000 V, can be selected for measurements at sensitive components, as well as systems with voltage limiting devices.

Measurement can be performed with a constantly rising test voltage in order to detect weak points in the insulation and determine tripping voltage for voltage limiting devices.

Voltage at the device under test and any triggering/breakdown voltage appear at the test instrument's display.

Standing-Surface Insulation Measurement

Standing-surface insulation measurement is performed with momentary line frequency and line voltage.

Low-Resistance Measurement

Bonding conductor resistance and protective conductor resistance can be measured with a test current of \geq 200 mA DC, automatic polarity reversal of the test voltage and selectable direction of current flow. If the adjustable limit value is exceeded, an LED lights up.

Earthing Resistance Measurement

In addition to measurement of the overall resistance of an earthing system, selective measurement of the earthing resistance of an individual earth electrode is also possible, without having to disconnect it from the earthing system. A current clamp sensor available as an accessory is utilized to this end.

Furthermore, the **PROFITEST MPRO** and the **PROFITEST MXTRA** allow for battery powered earthing resistance measurements: 3/4-pole and earth loop resistance measurements.

Universal Connector System

The interchangeable plug inserts and 2-pole plug-in adapter – which can be expanded to 3-poles for phase sequence testing – allows for use of the test instrument all over the world.

Special Features

- Display of approved fuse types for electrical systems
- Energy meter start-up testing
- Measurement of biasing, leakage and circulating current of up to 1 A, as well as working current of up to 1000 A with current clamp sensor (available as an accessory)
- Phase sequence measurement (including highest line-to-line voltage)
- Optional connection of a Bluetooth keyboard (Logitech) and a Bluetooth barcode reader in preparation

Display with Selectable Language

The LCD panel consists of a backlit dot matrix at which menus, setting options, measurement results, tables, instructions and error messages, as well schematic diagrams appear.

The display can be set to the desired language depending on the country in which the test instrument is used: D, GB, I, F, E, P, NL, S, N, FIN, CZ or PL

Operation

Device functions are selected directly with the help of a rotary selector knob. Softkeys allow for convenient selection of subfunctions and parameter settings. Unavailable functions and parameters are automatically prevented from appearing at the display.

The start and RCD tripping functions included directly on the instrument are identical to the functions of the two keys located on the test plug, allowing for easy measurement at difficult to access locations.

Schematic diagrams, measuring ranges and help texts cab be displayed for all basic functions and sub-functions.

Phase Tester

Protective conductor potential is tested after starting a test sequence and touching the contact surface for finger contact. The PE symbol appears at the display if a potential difference of more than 25 V is detected between the contact surface and the protective contact at the mains plug.

Error Indication

- The instrument automatically detects instrument-to-system connection errors, which are indicated in a connection pictograph.
- Errors within the electrical system (no mains or phase voltage, tripped RCD) are indicated at 3 LEDs and by means of popup windows at the tilting LCD panel.

Battery Monitoring and Self-Test

Battery monitoring is conducted while the instrument is subjected to an electrical load. Results are displayed both numerically and with a symbol. Test images can be called up one after the other, and LEDs can be tested during the self-test. The instrument is shut down automatically when the rechargeable batteries are discharged. A microprocessor controlled charging circuit is used to assure safe charging of rechargeable NiMH or NiCd batteries.

Data Entry at the RS 232 Port

Data can be read in via a barcode or RFID scanner connected to the RS 232 port, and comments can be entered with the help of the softkeys.

IZYTRONIQ User Software for PC

IZYTRONIQ is a test software developed from scratch. It enables the user to visualize and manage the entire testing procedure for all our test instruments and to document it in an audit-proof manner. For the first time, it is thus possible to combine the test and measurement data from a great variety of test instruments and multimeters in one test and generate one report report thereof. The intuitive user guidance and modern design provide for quick access to all functions.

The software is available in different sizes and versions for trades, industry and vocational training purposes.

Overview of Features Included with Device Variants

				•
PROFITEST (Article Number)	_	_	_	SECULIFE IP (M535E)
	Mpro (M535C)	Mtech+ (M535B)	MXTRA (M535D)	ECULIF A535E)
	153 153	153 A53	123 X	153 153
	25	25	25	ິ
Testing of residual current devices (RCDs)				
U _B measurement without tripping RCD	1	 Image: A start of the start of	1	 Image: A start of the start of
Tripping time measurement	1	1	1	1
Measurement of tripping current I _F	1	1	1	1
Selective, SRCDs, PRCDs, type G/R	1	1	1	1
AC/DC sensitive RCDs, type B, B+		1	1	1
DC sensitive RDC-DDs and RCMBs	1	1	1	1
Testing of IMDs			1	1
Testing of RCMs	_	—	1	—
Testing for N-PE reversal	1	1	1	1
Measurement of loop impedance Z _{L-PE} / Z _{L-N}				
Fuse table for systems without RCDs	1	1	1	1
Without tripping the RCD, fuse table	_	1	1	1
With 15 mA test current ¹⁾ without tripping the RCD	1	1	1	1
Earthing resistance R _E (mains operation)	-	-		-
I-U measuring method (2/3-wire measuring method via measuring	1	1	1	1
adapter: 2-wire/2-wire + probe)				
Earthing resistance R _F (battery operation)	,		,	
3 or 4-wire measurement via PRO-RE adapter	1		1	_
Soil resistivity ρ_E (battery operation)	,		,	
(4-wire measurement via PRO-RE adapter)	1	_	-	_
Selective earthing resistance RE (mains operation) with 2-pole				
adapter, probe, earth electrode and current clamp sensor (3-wire	1	1	1	1
measuring method)				
Selective earthing resistance R _E (battery operation) with probe,				
earth electrode and current clamp sensor (4-wire measuring	1	—	1	—
method via PRO-RE adapter and current clamp sensor)				
Earth loop resistance R _{ELOOP} (battery operation)				
with 2 clamps (current clamp sensor direct and current clamp trans-	1	—	1	—
former via PRO-RE/2 adapter)				
Measurement of equipotential bonding R _{LO} ,	1	1	1	1
automatic polarity reversal Insulation resistance R _{ISO} ,				
variable or rising test voltage (ramp)	1	1	1	1
Voltage $U_{L-N} / U_{L-PE} / U_{N-PE} / f$	1	1	1	./
	v	v	•	•
Special measurements				
Leakage current (with clamp) IL, IAMP	1	1	1	1
Phase sequence	1	1	1	1
Earth leakage resistance R _{E(ISO)}	1	1	1	1
Voltage drop (1	1	1	1
Standing-surface insulation Z _{ST}	1	1	1	1
Meter start-up (kWh-Test)	1	1	1	—
Leakage current with PRO-AB adapter (IL)		—	1	1
Residual voltage test (Ures)		—	1	—
Intelligent ramp (ta $+ \Delta l$)	—	—	1	—
Electric vehicles at charging stations (IEC 61851)	—	1	1	—
Report generation of fault simulations on PRCDs with	_	_	1	
PROFITEST PRCD adapter			-	
Features				
Selectable user interface language ²	1	1	1	1
Memory (database for up to 50,000 objects)	· ·	· ·	· ·	· ·
Automatic test sequence function	· ·	· ·	1	· ·
RS 232 port for RFID/barcode scanner	<i>·</i>	✓ ✓	<i>·</i>	· ·
USB port for data transmission	✓ ✓	· ·	· ·	✓ ✓
Interface for <i>Bluetooth</i> [®]	-	✓ ✓	✓ ✓	✓ ✓
IZYTRONIQ BUSINESS Starter				
database and report software for PC	1	~	1	1
Measuring category: CAT III 600 V / CAT IV 300 V	1	1	1	1
DAkkS calibration	· ·	· ·	· ·	1
				-

¹ So-called live measurement is only advisable if there is no bias current within the system. Only suitable for motor circuit breaker with low nominal current.

² Currently available languages: D, GB, I, F, E, P, NL, S, N, FIN, CZ, PL

Data Interface

Measurement data are transmitted to a PC via the integrated USB port, at which they can be printed in report form and archived.

Software update

The test instrument is always kept current thanks to firmware which can be updated via the USB port. Software is updated during the course of recalibration by our service department, or directly by the customer.

Sample Displays

PROFITEST MASTER and SECULIFE IP Test Instruments

Softkeys allow for convenient selection of sub-functions and parameter settings. Unavailable sub-functions and parameters are automatically prevented from appearing at the display.

Ųм

230U fn 50,0Hz

Loop Resistance Measurement

Insulation Measurement

Low-Resistance Measurement

Ş	PE BA OO LN≹■	⊤ 🔊 ⊨	l
RLO	0,20) Ω	₿→₽Е
			Limits
			Roffset on off
Roffse	т	0,11Ω	+,

Voltage Measurement

Applicable Regulations and Standards

150 00004 0	On such as a final state in the limit of the sec
IEC 60364-6	Operation of electrical installations
EN 50110-1 DIN VDE 0105-100	– Part 100: General requirements
EN 60529	Test instruments and test procedures
VDE 0470 Part 1	Degrees of protection provided by enclosures (IP code)
IEC 60364-6	Low-voltage electrical installations
VDE 0100 Part 600	– Part 6: Tests
IEC 60364-7-710	Erection of low-voltage installations
VDE 0100 Part 710	- Requirements for special installations or locations
	- Part 710: Medical locations
IEC 61010/	Safety requirements for electrical equipment for measurement,
EN 61010/	control and laboratory use
VDE 0411	Part 1: General requirements (IEC 61010-1 + Cor.)
	Part 31:Safety requirements for hand-held probe assemblies for
	electrical measurement and test (IEC 61010-031 + A1)
IEC 61140	Protection against electric shock
DIN EN 61140	Common aspects for installation and equipment
DIN EN 61326-1	Electrical equipment for measurement, control and laboratory
VDE 0843-20-1	use – EMC requirements
	- Part 1: General requirements
IEC 61557/	Electrical safety in low voltage distribution systems up to AC
EN 61557/	1000 V and DC 1500 V – Equipment for testing, measuring or
VDE 0413	monitoring of protective measures
	Part 1: General requirements (IEC 61557-1)
	Part 2: Insulation resistance (IEC 61557-2)
	Part 3: Loop impedance (IEC 61557-3)
	Part 4: Resistance of earth connection, protective conductors
	and equipotential bonding (IEC 61557-4)
	Part 5: Resistance to earth (IEC 61557-5)
	Part 6: Effectiveness of residual current devices (RCD) in TT, TN
	and IT systems (IEC 61557-6)
	Part 7: Phase sequence (IEC 61557-7) Part 10:Electrical safety in low voltage distribution systems up to
	1000 V AC and 1500 V DC – Equipment for testing,
	measuring or monitoring of protective measures
	(IEC 61557-10)
	Part 11:Effectiveness of residual current monitors (RCMs) type A
	and type B in TT, TN and IT systems
	(IEC 61557-11) (PROFITEST MXTRA only)
IEC 61851-1	Electric vehicle conductive charging system
DIN EN 61851-1	– Part 1: General requirements
	· · · · · · · · · · · · · · · · · · ·

Characteristic Values

Nominal Ranges of Use

Voltage U _N	120 V (108 132 V) 230 V (196 253 V) 400 V (340 440 V)
Frequency f _N	16 ^{2/} ₃ Hz (15.4 18 Hz) 50 Hz (49.5 50.5 Hz) 60 Hz (59.4 60.6 Hz) 200 Hz (190 210 Hz) 400 Hz (380 420 Hz)
Overall voltage range	65 550 V
Overall frequency range	15.4 420 Hz
Waveform	sine
Temperature range	0° C + 40° C
Battery voltage	8 12 V
Line impedance angle	Corresponds to $\cos \phi = 1 \dots 0.95$
Probe resistance	< 50 kΩ

Characteristic Values PROFITEST MTECH+

				Input							Con	necti	ons		
Func- tion	Measured Quantity	Display Range	Reso- lution	Impedance/ Test Current	Measuring Range	Nominal Values	Measuring Uncertainty	Intrinsic Uncertainty	Plug Insert 1	2-Pole Adapter	3-Pole Adapter	Probe	WZ12C	ClampS Z3512A	MFLEX P300
	U _{L-PE}	0 99.9 V	0.1 V		0.3 600 V ¹⁾		±(2% rdg.+5d)	±(1% rdg.+5d)							
	U _{N-PE}	100 600 V	1 V		0.3 000 V		±(2% rdg.+1d)	±(1% rdg.+1d)	•	•	•				
	f	15.0 99.9 Hz	0.1 Hz		DC 15,4 420 Hz	$U_{\rm N} = 120/230/$	±(0.2% rdg.+1d)	$\pm (0.1\% \text{ rdg.} + 1d)$		-					
		100 999 Hz	1 Hz		,	400/500 V									
U	U _{3~}	0 99.9 V 100 600 V	0.1 V 1 V	$5 M\Omega$	0.3 600 V		±(3% rdg.+5d) ±(3% rdg.+1d)	\pm (2% rdg.+5d) \pm (2% rdg.+1d)			•				
		0 99.9 V	0.1 V			$f_N = 16^2 / _3 / 50 / _3 / _3 / _3 / _3 / _3 / _3 / _3 / _$	$\pm (2\% \text{ rdg.}+5d)$	$\pm (1\% \text{ rdg.} + 5d)$	-						
	U _{PROBE}	100 600 V	1 V		1.0 600 V	60/200/400 Hz	$\pm(2\% \text{ rdg.}+1\text{d})$	$\pm(1\% \text{ rdg.}+1\text{d})$				•			
	U _{L-N}	0 99.9 V	0.1 V		1.0 600 V ¹		±(3% rdg.+5d)	±(2% rdg.+5d)	•		•				
	UL-N	100 600 V	1 V		1.0 000 v		±(3% rdg.+1d)	±(2% rdg.+1d)			-				
	U _{IAN}	0 70.0 V	0.1 V	$0.3 \cdot I_{\Delta N}$	5 70 V		+10% rdg.+1d	+1% rdg1d +9% rdg.+1d							
		10 Ω 999 Ω	1Ω	1 10 1 05		-			-						
		1.00 kΩ 6.51 kΩ	0.01 kΩ	$I_{\Delta N} = 10 \text{ mA} \cdot 1,05$		U _N =									
		$3 \Omega \dots 999 \Omega$	1Ω	Lu = 20 mA - 1.05		120 V									
	_	1 kΩ 2.17 kΩ	01011411		culculated value	230 V									
	R _E	1Ω 651 Ω	1Ω	I _{∆N} =100 mA · 1,05	from	400 V ²									
		0.3 Ω 99.9 Ω 100 Ω 217 Ω	0.1 Ω 1 Ω	I _{∆N} =300 mA · 1,05	$U_{I\Delta N} / I_{\Delta N}$	6 50/00 11									
		0.2 Ω 9.9 Ω	0.1 Ω		-	$f_{N} = 50/60 \text{ Hz}$									
$I_{\Delta N}$		10 Ω 130 Ω	1Ω	I _{∆N} =500 mA · 1,05		U _I = 25/50 V						•			
	$I_F (I_{\Delta N} = 6 \text{ mA})$	1.8 7.8 mA		1.8 7.8 mA	1.8 7.8 mA	0[= 23/30 V			•	•		optio			
IF_	$I_F (I_{AN} = 10 \text{ mA})$	3.0 13.0 mA	0,1 mA	3.0 13.0 mA	3.0 13.0 mA	I _{AN} =						nal			
	$I_F (I_{\Delta N} = 30 \text{ mA})$	9.0 39.0 mA	1	9.0 39.0 mA	9.0 39.0 mA	6 mA	±(5% rdg.+1d)	±(3.5% rdg.+2d)							
	$I_F (I_{\Delta N} = 100 \text{ mA})$	30 130 mA	1 mA	30 130 mA	30 130 mA	10 mA	±(3 /0 10g.+10)	±(0.0 /0 rug.+2u)							
	$I_F (I_{\Delta N} = 300 \text{ mA})$	90 390 mA	1 mA	90 390 mA	90 390 mA	30 mA									
	$I_F (I_{\Delta N} = 500 \text{ mA})$	150 650 mA	1 mA	150 650 mA	150 650 mA	100 mA 300 mA		40/	_						
	$U_{L} / U_{L} = 25 V$	0 25.0 V 0 50.0 V	0.1 V	wie I_{Δ}	0 25.0 V 0 50.0 V	500 mA ²	+10% rdg.+1d	+1% rdg1d +9% rdg.+1 d							
	$\frac{U_{L\Delta} / U_L = 50 \text{ V}}{t_A (I_{\Delta N} \cdot 1)}$	0 1000 ms	1 ms	6 500 mA	0 1000 ms			+9%1uy.+1 u							
	$t_A (t_{\Delta N} \cdot 2)$	0 1000 ms	1 1113	2 · 6 2 · 500 mA	0 1000 ms	-	±4 ms	±3 ms							
	$t_A (l_{\Delta N} \cdot 5)$	0 40 ms	1 ms	5 · 6 5 · 300 mA	0 40 ms	-	±1110	20110							
					0.15 0.49 Ω	U _N = 120/230 V	±(10% rdg.+ 30d)	±(5% rdg.+30d)							
	$Z_{L-PE}(\frown)$ Z_{L-N}	0 999 mΩ 1.00 9.99 Ω	1 mΩ		$0.50 \dots 0.99 \Omega$		±(10% rdg.+ 30d)								
	4L-N		- 0.01 Ω		1.00 9.99 Ω	fN=16 ² /3 ⁰ /50/60Hz	±(5% rdg.+ 3d)	±(3% rdg.+3d)							
	Z _{L-PE} - DC	0999 mΩ	0.1 Ω	1.3 3.7 A AC	0.25 0.99 Ω		±(18% rdg.+30d)	±(6% rdg.+50d)							
	+ DC	1.00 9.99 Ω 10.0 29.9 Ω		0.5/1.25 A DC	$1.00 \dots 9.99 \Omega$	$f_N = 50/60 \text{ Hz}$	±(10% rdg.+3d)	±(4% rdg.+3d)							
-		0 9.9 A	0,1 A	0.0/1.20/120	120 (108 132) V	1			-						
^Z L-PE	I _K (Z _{L-PE} A,	10 999 A	1 A		230 (196 253) V		a a laulata dual	us from 7	-	•					
7	$Z_{L-PE} - DC)$	1.00 9.99 kA	10 A		400 (340 440) V		calculated val	ue ironi z _{L-PE}	•	Z _{L-PE}					
4L-N		10.0 50.0 kA	100 A		500 (450 550) V										
	7 (1EmA)	0.5 9.99 Ω	0.01 Ω			only display range		1/00/ rdg + 0D)	_						
	Z _{L-PE} (15 mA)	10.0 99.9 Ω 100 999 Ω	0.1 Ω 1 Ω		10 100 Ω 100 1000 Ω	U _N = 120/230 V	±(10% rdg.+10D) ±(8% rdg.+2D)	±(2% rdg.+2D) ±(1% rdg.+1D)							
		100 999 mA	1 mA	15 mA AC	calcul. value depends				-						
	I _K (15 mA)	0.00 9.99 A	0.01 A		on U_N and Z_{I-PF} :	60 Hz	calculated value fr	om Z_{L-PE} (15 mA):							
		10.0 99.9 A	0.1 A		I _K =U _N /101000Ω		$I_{K} = U_{N}/Z_{L}$								
	D ()	0 999 mΩ	1 mΩ		0.15 Ω 0.49 Ω		±(10% rdg.+30d)								
	R _E (with probe)	1.00 9.99 Ω	0,01 Ω	1.3 3.7 A AC		U _N = 120/230 V	±(10% rdg.+30d) ±(5% rdg.+3d)								
	[R _F (without probe)	$10.0 \dots 99.9 \Omega$	0,1 Ω	1.3 3.7 A AC 400 mA AC	1.0 Ω9.99 Ω 10 Ω99.9 Ω	$U_{\rm N} = 400 {\rm V}^{1}$	$\pm (5\% \text{ rdg.} + 30)$ $\pm (10\% \text{ rdg.} + 3d)$	\pm (3% rdg.+3d) \pm (3% rdg.+3d)							
_	values as Z _{I -PF}]	100 999 Ω	1Ω	40 m A A C	$100 \Omega999 \Omega$	f _N = 50/60 Hz	$\pm(10\% \text{ rdg.}+3\text{d})$	$\pm(3\% \text{ rdg.}+3d)$							
R _E	L-FD	1 kΩ 9.99 kΩ	0.01 kΩ	4 mA AC	1 kΩ9.99 kΩ		±(10% rdg.+3d)	±(3% rdg.+3d)	•	•		•			
		0 999 mΩ	1 mΩ	1.3 3.7 A AC	0.25 0.99 Ω	$U_{\rm N} = 120/230$ V	±(18% rdg.+ 30d)	±(6% rdg.+50D)	1						
	R _E DC+	1.00 9.99 Ω	0.01 Ω	0.5/1.25 A DC	$1.00 \dots 9.99 \Omega$		$\pm(10\% \text{ rdg.} + 300)$ $\pm(10\% \text{ rdg.} + 30)$								
		10.0 29.9 Ω	0.1 Ω			IN	, 23 50)	,	-						
\vdash	U _E	0 253 V	1 V 1 mΩ		calculated value										
R _E Sel	R _E	0 999 Ω	1Ω	1.3 3.7 A AC		see R _E	$\pm (20\% \mbox{ rdg.}+ 20 \mbox{ d})$	±(15% rgd.+ 20 d)						•	
clip	D DO	0 000 0	1 mΩ	0.5/1.25 A DC	0.25 300 Ω ⁵⁾	U _N = 120/230 V	1/000/ ml 000 h	1/1E0/ ml 00 1	1						•
r l	R _E DC+	0 999 Ω	1Ω			$f_N = 50/60 \text{ Hz}$	±(22% rdg.+20 d)	±(15% rdg.+ 20 d)							
-		10 kΩ 199 kΩ	1 kΩ		$10 \text{ k}\Omega \dots 199 \text{ k}\Omega$		±(20% v.M.+2D)	±(10% v.M.+3D)							
EX-	Z _{ST}	200 kΩ 999 kΩ	1 kΩ	2.3 mA bei 230 V	200 kΩ 999 kΩ				•	•	•	•			
TRA	-31	1.00 MΩ 9.99 MΩ			1.00 MΩ 9.99 MΩ		±(10% v.M.+2D)	±(5% v.M.+3D)							
		10.0 MΩ 30.0 MΩ	0.1 1/122		10.0 MΩ 30.0 MΩ										

Characteristic Values PROFITEST MTECH+

-								L.L.C.			Co	nnectio			
Func-	Measured Quantity	Display Range	Reso- lution	Test Current	Measuring Range	Nominal Values	Measuring Uncertainty	Intrinsic Uncertainty	Plug	2-Pole	3-Pole		Clan		1
	Quantity		lution				oncontainty	oncontainty	Insert ¹	Adapter	Adapter	WZ12C	Z3512A	P300	CP1100
		1 999 kΩ	1 kΩ		50 999 kΩ	U _N = 50 V									
		1.00 9.99 MΩ 10.0 49.9 MΩ	10 kΩ 100 kΩ		$1.00 \dots 49.9 \ \text{M}\Omega$	I _N = 1 mA									
		1 999 kΩ	1 kΩ	-											
		1.00 9.99 MΩ	10 kΩ		50 999 kΩ	$U_{\rm N} = 100 \rm V$	kO ranga	kO ranga							
		$10.0 \dots 99.9 \ \text{M}\Omega$	$100 \text{k}\Omega$		1.00 99.9 MΩ	11 0	$k\Omega$ range $\pm(3\% rdg.+10d)$								
	R _{INS} . R _{E INS}	1 999 kΩ	1 kΩ	I _K = 1.5 mA	50 00010		±(3 % lug. + lou)	±(0 % lug. + 100)							
R _{INS}		1.00 9.99 MΩ 10.0 99.9 MΩ	10 kΩ 100 kΩ	K	50 999 kΩ 1.00 200 MΩ	$U_N = 250 \text{ V}$ $I_N = 1 \text{ mA}$	$M\Omega$ range	$M\Omega$ range	•	•					
		100 200 MΩ	1 MΩ		1.00 200 1/122	N = 1 mA	±(5% rdg.+1d)	±(3% rdg.+1d)							
		1 999 kΩ	1 kΩ	-		U _N = 325 V									
		$1.00\\ 9.99\ M\Omega$	10 kΩ		$50 \dots 999 k\Omega$	$U_{N} = 500 V$									
		10.0 99.9 MΩ	100 kΩ		1.00 499 MΩ	$U_{\rm N} = 1000 \rm V$									
-		100 500 MΩ 10 999 V-	1 MΩ 1 V			I _N = 1 mA									
	U	1.00 1.19 kV	10 V		10 1.19 kV		±(3% rdg.+1d)	±(1.5% rdg.+1d)							
R _{L0}	R _{LO}	0.00 Ω 9.99 Ω 10.0 Ω 99.9 Ω		$I_m \ge 200 \text{ mA}$ $I_m < 200 \text{ mA}$	0.1 Ω 5.99 Ω 6.0 Ω 100 Ω	$U_0 = 4.5 V$	±(4% rdg.+2d)	±(2% rdg.+2d)		•					
-		10.0 12 00.0 12	100 11122	Transforma-	0.0 32 100 32										
				tion ratio ³			5	5							
		0.0 99.9 mA	0.1 mA	_			±(13% rdg.+5d)	±(5% rdg.+4d)							
		100 999 mA	1 mA	1 V/A	5 15 A		(100/ rdg , 1d)	. (E0/ rdg . 1d)				I 15A			
		1.00 9.99 A 10.0 15.0 A	0.01 A 0.1 A	-		f _N = 50/60 Hz	±(13% rdg.+1d)	±(5% rdg.+1d)							
		1.00 9.99 A	0.01 A				±(11% rdg.+4d)	±(4% rdg.+3d)	1						
		10.0 99.9 A	0.1 A	1 mV/A	5 150 A		±(11% rdg.+1d)	±(4% rdg.+1d)				II 150A			
		100 150 A	1 A												
		0.0 99.9 mA	0.1 mA	1 V/A	5 1000 mA		±(7% rdg.+2 d)						1 A		
		100 999 mA	1 mA	100 mV/A	0.05 10 A	_	±(7% rdg.+1 d)		-				10 A		
		0.00 9.99 A 0.00 9.99 A	0.01 A 0.01 A		0.05 TU A	f _N = 16.7/50/60/	\pm (3.4% rdg.+2 d) \pm (3.1% rdg.+2 d)		-				IU A		
SEN-		10.0 99.9 A	0.01 A	10 mV/A	0.5 100 A		$\pm (3.1\% \text{ rdg.} \pm 2 \text{ d})$ $\pm (3.1\% \text{ rdg.} \pm 1 \text{ d})$,	+				100 A		
SOR		0.00 9.99 A	0.01 A			200/400 Hz	\pm (3.1% rdg.+1 d)		1						
	I _{L/Amp}	10.0 99.9 A	0.1 A	1 mV/A	5 1000 A		±(3.1% rdg.+2 d)		1				1000A		
6 7		100 999 A	1 A				±(3.1% rdg.+1 d)	±(3% rdg.+1 d)							
		0.0 99.9 mA	0.1 mA	1 V/A	30 1000 mA		±(27% rdg.+100 d)							0.03	
		100 999 mA	1 mA		00 1000 11/1		±(27% rdg.+11 d)	,	1					3	
		0.00 9.99 A	0.01 A	100 mV/A	0.3 10 A	f _N = 50/60 Hz	±(27% rdg.+12 d)							0.3	
			0.01 A		IN COLOR	±(27% rdg.+11 d)	,	1					30		
		0.00 9.99 A	0.01 A	10 mV/A	3 100 A		±(27% rdg.+100 d)							3	_
		10.0 99.9 A 0.00 9.99 A	0.1 A 0.01 A				$\pm (27\% \text{ rdg.} + 11 \text{ d})$	(,						300	100A
		10.0 99.9 A	0.01 A	10 mV/A	0.5 100 A	f	±(5% rdg.+12 d) ±(5% rdg.+2 d)	$\pm (3\% \text{ rdg.}+12 \text{ d})$ $\pm (3\% \text{ rdg.}+2 \text{ d})$	-						100A
			-			f _N = DC/16.7/50/60/	\pm (5% rdg.+2 d) \pm (5% rdg.+50 d)		+						
		0.00 9.99 A 0.01 A 10.0 99.9 A 0.1 A 1 mV/A 5 10	5 1000 A	200 Hz	$\pm (5\% \text{ rdg.} + 50 \text{ d})$ $\pm (5\% \text{ rdg.} + 7 \text{ d})$	$\pm (3\% \text{ rdg.}+50 \text{ d})$ $\pm (3\% \text{ rdg.}+7 \text{ d})$	+						1000A		
		100 999 A	1 A		5 1000 A	200 112	$\pm (5\% \text{ rdg.}+2 \text{ d})$		+						~

U > 253 V, with 2 or 3-pole adapter only $1 \cdot / 2 \cdot I\Delta N > 300$ mA and $5 \cdot I\Delta N > 500$ mA and If > 300 mA only up to U_N ≤ 230 V ! $I\Delta N 5 \cdot 300$ mA only with U_N = 230 V The transformation ratio selected at the clamp (1 ... 1000 mV/A) must be set in the 2

3 "Type" menu with the rotary switch in the "SENSOR" position.

5

the indicated measuring and intrinsic uncertainties already include the uncertainties

of the respective current clamp. Measuring range of the signal input at the test instrument UE: 0 ... 1.0 V_{eff} (0 ... 1.4 Vpeak) AC/DC 6 7

8

Key: D = digits, rdg. = measured value (reading)

Characteristic Values PROFITEST MPRO, MXTRA & SECULIFE IP

_			D -	Input	M	N		Intel 1			Con	nectior			
tion	Measured Quantity	Display Range	Reso- lution	Impedance / Test Current	Measuring Range	Nominal Values	Measuring Uncertainty	Intrinsic Uncertainty	Plug Insert ¹	2-Pole Adapter	3-Pole Adapter	Probe		Clamp Z3512A	
	U _{L-PE}	0 99.9 V	0.1 V		0.3 600 V ¹		±(2% rdg.+5d)	±(1% rdg.+5d)							1.00
	U _{N-PE}	100 600 V	1 V		0.0 000 v	U _N = 120 V	±(2% rdg. + 1 d)	±(1% rdg. + 1 d)	•	•	•				
	f	15.0 99.9 Hz 100 999 Hz	0.1 Hz 1 Hz		DC 15.4 420 Hz	230 V	\pm (0.2% rdg. + 1 d)	$\pm (0.1\%$ rdg. + 1 d)							
U	U _{3~}	0 99.9 V	0.1 V	5 MΩ	0.3 600 V	400 V	±(3% rdg.+5d)	±(2% rdg.+5d)			•				
U	03~	100 600 V	1 V	0 10122	0.0 000 V	500 V		$\pm (2\% \text{ rdg.} + 1 \text{ d})$	_				_		
	UProbe	0 99.9 V 100 600 V	0.1 V 1 V		1.0 600 V	f _N = 16 ² / ₃ /50/	\pm (2% rdg.+5d) \pm (2% rdg. + 1 d)	±(1% rdg.+5d) ±(1% rdg.+1d)				٠			
	11	0 99.9 V	0.1 V	-	1.0 600 V ¹	60/200/400 Hz	$\pm(3\% \text{ rdg.}+5d)$	$\pm(2\% \text{ rdg.}+5d)$	•		•		-		
	U _{L-N}	100 600 V	1 V		1.0 000 V		±(3% rdg. + 1 d)		-						
	UIAN	0 70.0 V	0.1 V	0.3 · I _{ΔN}	5 70 V	U _N =	+10% rdg. + 1 d	+1% rdg1d +9% rdg. + 1 d							
		10 Ω 999 Ω	1Ω	10 1 05		120 V 230 V		1376109.110							
		1.00 k Ω 6.51 k Ω	0.01 kΩ	$I_{\Delta N} = 10 \text{ mA} \cdot 1.05$		400 V									
		3 Ω 999 Ω	1Ω	$I_{\Delta N} = 30 \text{ mA} \cdot 1.05$	a a la colata al contros										
	R _E	1 kΩ 2.17 kΩ 1Ω 651 Ω	0.01 kΩ 1Ω	I _{DN} =100 mA · 1.05	calculated value Off	f _N = 50/60 Hz									
	''E	0.3 Ω 99.9 Ω	0.1 Ω	I _{DN} =300 mA · 1.05	$R_E = U_{I\Delta N} / I_{\Delta N}$	U _L = 25/50 V									
		$100 \ \Omega \dots 217 \ \Omega$	1Ω	IM=300 IIIA · 1.05		-									
$I_{\Delta N}$		0.2 Ω 9.9 Ω 10 Ω 130 Ω	0.1 Ω 1 Ω	I _{∆N} =500 mA · 1.05		$I_{\Delta N} =$									
	$I_F (I_{AN} = 6 \text{ mA})$	1.8 7.8 mA	1 52	1.8 7.8 mA	1.8 7.8 mA	6 mA 10 mA			•	•		Option			
F	$I_{\rm F} (I_{\Delta \rm N} = 10 \text{ mA})$	3.0 13.0 mA	0,1 mA	3.0 13.0 mA	3.0 13.0 mA	30 mA						υριιστι			
	$I_{\rm F} (I_{\rm AN} = 30 \text{ mA})$	9.0 39.0 mA		9.0 39.0 mA	9.0 39.0 mA	100 mA		±(3.5% rdg. + 2							
	$l_{\rm F} (l_{\Delta \rm N} = 100 \rm mA)$	30 130 mA	1 mA	30 130 mA	30 130 mA	300 mA 500 mA ²	±(5% rdg. + 1 d)	d)							
	$\frac{I_F (I_{\Delta N} = 300 \text{ mA})}{I_F (I_{\Delta N} = 500 \text{ mA})}$	90 390 mA 150 650 mA	1 mA 1 mA	90 390 mA 150 650 mA	90 390 mA 150 650 mA	500 MA									
	$U_{IA} / U_{I} = 25 V$	0 25.0 V			0 25.0 V		. 10%	+1% rdg1d	-						
	$U_{I\Delta}/U_L = 50 V$	0 50.0 V	0.1 V	Same as ${\rm I}_\Delta$	0 50.0 V	$U_N \le 230 V$	+10% rdg. + 1 d	+9% rdg.+ 1d							
	$t_A (I_{\Delta N} \cdot 1)$	0 1000 ms	1 ms	6 500 mA	0 1000 ms	11 - 00011		10							
	$t_A (I_{\Delta N} \cdot 2)$ $t_A (I_{\Delta N} \cdot 5)$	0 1000 ms 0 40 ms	1 ms 1 ms	2 · 6 2 · 500 mA 5 · 6 5 · 300 mA	0 1000 ms 0 40 ms	$U_N \le 230 V$	±4 ms	±3 ms							
			1 1113	5 0 5 500 MA	0.10 0.49 Ω	U _N = 120/230 V	±(10% rdg.+20d)	±(5% rdg.+20d)							
	$Z_{L-PE}(\frown)$ Z_{L-N}	0 999 mΩ 1.00 9.99 Ω	1 mΩ	3.7 4.7 A AC	$0.50 \dots 0.99 \Omega$	400/500 V ¹	±(10% rdg.+20d)	±(4% rdg.+20d)							
	4L-N		0.01 Ω	07 47440	1.00 9.99 Ω	f _N =16 ² /3 ⁸ /50/60 Hz	±(5% rdg.+3d)	±(3% rdg.+3d)							
	Z _{L-PE}	0 999 mΩ 1.00 9.99 Ω	0.1 Ω	3.7 4.7 A AC 0.5/1.25 A DC	$0.25 \dots 0.99 \ \Omega$		±(18% rdg.+30d)	±(6% rdg.+50d)							
	+ DC	10.0 29.9 Ω		0.0/1.20/1.00	1.00 9.99 Ω	f _N = 50/60 Hz	\pm (10% rdg.+3d)	±(4% rdg.+3d)							
Zi de	I _K (Z _{L-PE} A,	0 9.9 A	0,1 A		120 (108 132) V										
-L-PE	'K VEL-PE	10 999 A 1.00 9.99 kA	1 A 10 A		230 (196 253) V		Value calculat	ted from Z _{I -PF}	•	•					
Z _{L-N}	$Z_{L-PE} - DC)$	10.0 50.0 kA	10 A		400 (340 440) V 500 (450 550) V			212		Z _{L-PE}					
	7 (15 mA)	0.5 99.9 Ω	0.1 Ω		10 100 Ω		±(10% rdg.+10d)	±(2% rdg. + 2 d)	-						
	Z _{L-PE} (15 mA)	$100 \dots 999 \Omega$	1Ω		$100 \dots 1000 \Omega$	U _N = 120/230 V	±(8% rdg. + 2 d)	±(1% rdg. + 1 d)							
		0.10 9.99 A	0.01 A	15 mA AC	100 mA 12 A	$f_N = 16^2 / \frac{8}{3} / 50 /$	Value calci	ulated from							
	l _K (15 mA)	10.0 99.9 A	0.1 A		(U _N = 120 V) 200 mA 25 A	60 Hz	$I_{\rm K} = U_{\rm N}/Z_{\rm L}$								
		100 999 A ¹⁴⁾	1 A		(U _N = 230 V)										
		$0 \ldots 999 \ m\Omega$	$1 \text{ m}\Omega$	3.7 4.7 A AC	0.10 Ω 0.49 Ω		±(10% rdg.+20d)								
	R _{E.sl} (without probe)	$1.00 \dots 9.99 \Omega$	0.01 Ω		0.50 Ω 0.99 Ω 1.0 Ω9.99 Ω	U _N same as U	±(10% rdg.+20d) ±(5% rdg.+3d)	\pm (4% rdg.+200) \pm (3% rdg.+3d)							
	p1050)	10.0 99.9 Ω 100 999 Ω	0.1 Ω 1 Ω	400 mA AC 40 mA AC	10 Ω99.9 Ω	function	$\pm(10\% \text{ rdg.}+3d)$	$\pm(3\% \text{ rdg.}+3d)$							
	${\sf R}_{\sf E}$ (with probe)	1 kΩ 9.99 kΩ	0.01 kΩ	40 MA AC	100 Ω999 Ω	f _N = 50/60 Hz	±(10% rdg.+3d)	±(3% rdg.+3d)							
	Be we we	0.5 99.9 Ω	0.1 Ω		1 kΩ 9.99 kΩ 10 Ω99.9 Ω	U _N = 120/230 V	±(10% rdg.+3d) ±(10% rdg.+10d)	\pm (3% rdg.+3d) \pm (2% rdg. + 2 d)	-						
R _E	R _{E (15 mA)} (without/with probe)	0.5 99.9 Ω 100 999 Ω	1Ω	15 mA AC	$10 \Omega99.9 \Omega$ $100 \Omega999 \Omega$	$f_N = 120/230 \text{ V}$ $f_N = 50/60 \text{ Hz}$	$\pm (10\% \text{ rdg.} + 10\text{d})$ $\pm (8\% \text{ rdg.} + 2 \text{ d})$	$\pm (2\% \text{ rdg.} + 2 \text{ d})$ $\pm (1\% \text{ rdg.} + 1 \text{ d})$	•	•		•			
	R _{E.sl} (without	0 999 mΩ	1 mΩ					, ,	1						
	probe) + DC	$1.00 \dots 9.99 \Pi \Omega$	0.01 Ω	3.7 4.7 A AC	0.25 0.99 Ω		±(18% rdg.+30d)	±(6% rdg.+50d)							
	R _{E.sl} (with probe)	$10.0 \dots 29.9 \Omega$	0.1 Ω	0.5/1.25 A DC	1.00 9.99 Ω	f _N = 50/60 Hz	±(10% rdg.+3d)	±(4% rdg.+3d)							
		0 959 1	11/	27 47440	P010_0000	U _N = 120/230 V	Coloulated L	_ ., p /p	1						
	U _E	0 253 V	1 V		$R_E = 0.10 \dots 9.99 \Omega$	f _N = 50/60 Hz	Calculated U _E	- UN . HE/HE'SI					<u> </u>		
	R _{E.sel}	0999 mΩ	$1 \text{ m}\Omega$	2.1 A AC		11 100/000 V								1	
р		1.00 9.99 Ω 10.0 99.9 Ω	0.01 Ω 0.1 Ω	2.1 A AC 400 mA AC	0.25 300 Ω 4	$U_N = 120/230 \text{ V}$ $f_N = 50/60 \text{ Hz}$	$\pm (20\% \mbox{ rdg.}{+}20 \mbox{ d})$	±(15% rdg.+20 d)						•	
R _E Sel	(only with probe)	$100 \dots 999 \Omega$	1Ω	40 mA AC		N 22.30112									•
Jamp	R _{E.sel}	0999 mΩ	1 mΩ	07 47440	0.05 000 0	100/00011									
h	+ DC	1.00 9.99 Ω 10.0 99.9 Ω	0.01 Ω 0.1 Ω	3.7 4.7 A AC 0.5/1.25 A DC	$0.25 300 \Omega$ $R_{E,tot} < 10 \Omega^4$	$U_N = 120/230 \text{ V}$ $f_N = 50/60 \text{ Hz}$	±(22% rdg.+20 d)	±(15% rdg.+20 d)							
	(only with probe)	$100 \dots 999 \Omega$	1Ω	3.0, 1.20 A DU	"E.TOT ~ 10 22	"N - 00/00 HZ									
		10 kΩ 199 kΩ	1 kΩ		10 kΩ 199 kΩ		±(20% v.M.+2D)	±(10% v.M.+3D)							
	Z _{ST}	200 kΩ 999 kΩ	1 kΩ	2.3 mA bei 230 V	200 kΩ 999 kΩ	$U_0 = U_{I-N}$	1(100/ ··· M OD)		•	•	•	•			
XTRA	01	1.00 MΩ 9.99 MΩ 10.0 MΩ 30.0 MΩ	0.01 MΩ 0.1 MΩ		1.00 MΩ 9.99 MΩ 10.0 MΩ 30.0 MΩ	0 L-11	±(10% v.M.+2D)	±(5% v.M.+3D)							
XTRA				1	10.0 10124 00.0 10122	1	1		1	1			<u> </u>	+	
extra		10.0 1122 00.0 1122				IT system nomi-								1	
				IT line voltage	20 kΩ 199 kΩ	nal voltages	±7%	±5%							
extra Extra	IMD test	20 648 kΩ 2.51 MΩ	1 kΩ	IT line voltage U.it = 90 550 V	20 kΩ 199 kΩ 200 kΩ 648 kΩ 2.51 MΩ		±7% ±12% ±3%	±5% ±10% ±2%	•		•				

											Con	nectio	ns		
Func-	Measured	Display Range	Reso-	Test Current	Measuring	Nominal	Measuring	Intrinsic	Dlug	0 Dolo	2 Dela		Cla	mp	
tion	Quantity	Display hange	lution	loot ourroint	Range	Values	Uncertainty	Uncertainty	Plug Insert ¹	2-Pole Adapter	3-Pole Adapter	WZ12C	Z3512A	MFLEX	CP110C
		1 999 kΩ 1.00 9.99 MΩ 10.0 49.9 MΩ	1 kΩ 10 kΩ 100 kΩ		50 999 kΩ 1.00 49.9 MΩ	$U_{N} = 50 V$ $I_{N} = 1 mA$								P300	
		1 999 kΩ 1.00 9.99 MΩ 10.0 99.9 MΩ	1 kΩ 10 kΩ 100 kΩ	I _K = 1.5 mA	50 999 kΩ 1.00 99.9 MΩ	$U_{N} = 100 \text{ V}$ $I_{N} = 1 \text{ mA}$	$k\Omega$ range = ±(5% rdg.+10D)	kΩ range							
R _{ISO}	R _{ISO} , R _{E ISO}	1 999 kΩ 1.00 9.99 MΩ 10.0 99.9 MΩ 100 200 MΩ	1 kΩ 10 kΩ 100 kΩ 1 MΩ		50 999 kΩ 1.00 200 MΩ	$U_{N} = 250 \text{ V}$ $I_{N} = 1 \text{ mA}$	$\pm (5\%$ rug. + rob) MΩ range $\pm (5\%$ rdg. + 1 d)	$M\Omega$ range	•	•					
		1 999 kΩ 1.00 9.99 MΩ 10.0 99.9 MΩ 100 500 MΩ	1 kΩ 10 kΩ 100 kΩ 1 MΩ		50 999 kΩ 1.00 499 MΩ	$\begin{array}{c} U_{N} = 325 \ V \\ U_{N} = 500 \ V \\ U_{N} = 1000 \ V \\ I_{N} = 1 \ mA \end{array}$									
	U	10 999 V– 1.00 1.19 kV	1 V 10 V		10 1.19 kV		±(3% rdg. + 1 d)	±(1.5% rdg. + 1 d)							
R _{LO}	R _{LO}	0.00 Ω 9.99 Ω 10.0 Ω 199.9 Ω	$\begin{array}{c} 10 \text{ m}\Omega \\ 100 \text{ m}\Omega \end{array}$	$I_m \ge 200 \text{ mA}$ $I_m < 200 \text{ mA}$	0.1 Ω 5.99 Ω 6.0 Ω 100 Ω	$U_0 = 4.5 \text{ V}$	±(4% rdg. + 2 d)	±(2% rdg. + 2 d)		•					
				Transforma- tion ratio ³			5	5							
		0.0 99.9 mA 100 999 mA 1.00 9.99 A 10.0 15.0 A	0.1 mA 1 mA 0.01 A 0.1 A	1 V/A	5 15 A	f _N = 50/60 Hz	±(13% rdg.+5d) ±(13% rdg.+1d)	±(5% rdg.+4d) ±(5% rdg.+1d)				l 15A			
		1.00 9.99 A 10.0 99.9 A 100 150 A	0.01 A 0.1 A 1 A	1 mV/A	5 150 A	N COOL	\pm (11% rdg.+4d) \pm (11% rdg.+1d)	±(4% rdg.+3d) ±(4% rdg.+1d)				II 150A			
		0.0 99.9 mA 100 999 mA	0.1 mA 1 mA	1 V/A	5 1000 mA		±(7% rdg.+2 d) ±(7% rdg.+1 d)						1 A		
		0.00 9.99 A	0.01 A	100 mV/A	0.05 10 A	f	±(3.4% rdg.+2 d)	±(3% rdg.+2 d)					10 A		
SEN-		0.00 9.99 A 10.0 99.9 A	0.01 A 0.1 A	10 mV/A	0.5 100 A	f _N = 16.7/50/60/200/ 400 Hz	±(3.1% rdg.+2 d) ±(3.1% rdg.+1 d)	±(3% rdg.+2 d) ±(3% rdg.+1 d)					100 A		
SOR 6 7	I _{L/Amp}	0.00 9.99 A 10.0 99.9 A 100 999 A	0.01 A 0.1 A 1 A	1 mV/A	5 1000 A		\pm (3.1% rdg.+1 d) \pm (3.1% rdg.+2 d) \pm (3.1% rdg.+1 d)	±(3% rdg.+2 d)					1000A		
<i>`</i>		0.0 99.9 mA 100 999 mA	0.1 mA 1 mA	1 V/A	30 1000 mA		±(27% rdg.+100 d)							0.03 3	-
		0.00 9.99 A	0.01 A 0.01 A	100 mV/A	0.3 10 A	f _N = 50/60 Hz		±(3% rdg.+12 d) ±(3% rdg.+11 d)						0.3 30	-
		0.00 9.99 A	0.01 A	10	0 100 1	1	±(27% rdg.+100 d)	±(3% rdg.+100 d)						3	1
		10.0 99.9 A	0.1 A	10 mV/A	3 100 A		±(27% rdg.+11 d)	±(3% rdg.+11 d)						300	1
		0.00 9.99 A	0.01 A	10	0.5 100.4		±(5% rdg.+12 d)								100A
		10.0 99.9 A	0.1 A	10 mV/A	0.5 100 A	f _N =	±(5% rdg.+2 d)	±(3% rdg.+2 d)							~
		0.00 9.99 A	0.01 A			DC/16.7/50/60/	±(5% rdg.+50 d)	±(3% rdg.+50 d)							1000A
		10.0 99.9 A	0.1 A	1 mV/A	5 1000 A	200 Hz	±(5% rdg.+7 d)								1000A
		100 999 A	1 A				±(5% rdg.+2 d)	±(3% rdg.+2 d)							

 $\begin{array}{c} 1 \\ 2 \\ 3 \\ \end{array}$ U > 230 V with 2 or 3-pole adapter only 1./2 · I\Delta N > 300 mA and 5 · I\Delta N > 500 mA and If > 300 mA only up to U_N ≤ 230 V ! 3 The transformation ratio selected at the clamp (1 ... 1000 mV/A) must be set in the "Type" menu with the rotary switch in the "SENSOR" position. 4 Where R_{Eselective}/R_{Etotal} < 100

⁵ the indicated measuring and intrinsic uncertainties already include the uncertainties of the respective current clamp.

6 Measuring range of the signal input at the test instrument UE 0 ... 1.0 Veff (0 ... 1.4 Vpeak) AC/DC 7

Input impedance of signal input at the test instrument: 800 $\mbox{k}\Omega$ 8

up to firmware version 3.4.4: for $f_N < 45$ Hz => $U_N < 253$ V as from firmware version 3.6.0: for $f_N < 45$ Hz => $U_N < 500$ V

Special Function PROFITEST MPRO, MXTRA

F	Management		Daga	Test Current/		Magazzina	Intrincic		Conne	ctions	
Func- tion	Measured Quantity	Display Range	Reso- lution	Signal Frequency ⁵	Measuring Range	Measuring Uncertainty	Intrinsic Uncertainty	Adapter fo PRO-RE	or Test Plug PRO-RE/2	Current Z3512A	Clamps Z591B
	RE, 3-pole RE, 4-pole	0.00 9.99 Ω 10.0 99.9 Ω 100 999 Ω 1.00 9.99 kΩ 10.0 50.0 kΩ		16 mA/128 Hz 1.6 mA/128 Hz 0.16 mA/128 Hz 0.16 mA/128 Hz 0.16 mA/128 Hz	1.00 Ω 19.9 Ω 5.0 Ω 199 Ω 50 Ω 1.99 kΩ 0.50kΩ 19.9kΩ 0.50kΩ 49.9kΩ	$\begin{array}{c} \pm (10\% \text{rdg.+10D}) \\ + 1 \Omega \\ \pm (10\% \text{rdg.+10d}) \end{array}$	\pm (3% rdg.+5D) + 0,5 Ω \pm (3% rdg.+5d)	6			
RE BAT	RE, 4-pole Selective With clamp meter	$\begin{array}{c} 0.00 \dots 9.99 \ \Omega \\ 10.0 \dots 99.9 \ \Omega \\ 100 \dots 99.9 \ \Omega \\ 1.00 \dots 99.9 \ \mathrm{k}\Omega \\ 1.00 \dots 19.9 \ \mathrm{k}\Omega \end{array}$	0.01 Ω 0.1 Ω 1 Ω 0.01 kΩ 0.1 kΩ	16 mA/128 Hz 16 mA/128 Hz 1.6 mA/128 Hz 0.16 mA/128 Hz 0.16 mA/128 Hz 0.16 mA/128 Hz 0.16 mA/128 Hz	1.00 Ω 9.99 Ω 10.0 Ω 200 Ω	±(15% rdg.+10d) ±(20% rdg.+10d)		6		9	
III- BAI	Soil resistivity (p)	0.0 9.9 Ωm 100 999 Ωm 1.00 9.99 kΩm		16 mA/128 Hz 1.6 mA/128 Hz 0.16 mA/128 Hz 0.16 mA/128 Hz 0.16 mA/128 Hz 0.16mA/128 Hz	100 Ωm 9.99 kΩm ¹² 500 Ωm 9.99 kΩm ¹² 5.00 kΩm 9.99 kΩm ¹³ 5.00 kΩm 9.99 kΩm ¹³ 5.00 kΩm 9.99 kΩm ¹³	±(20% rdg.+10d)	±(12% rdg.+10d)	6			
	Probe distance d (p)	0.1 999 m									
	RE, 2 clamps	0.00 9.99 Ω 10.0 99.9 Ω 100 999 Ω 1.00 1.99 kΩ	0.01 Ω 0.1 Ω 1 Ω 0.01 kΩ	30 V / 128 Hz	0.10 9.99 Ω 10.0 99.9 Ω	±(10% rdg.+5d) ±(20% rdg.+5d)	±(5% rdg.+5d) ±(12% rdg.+5d)		7	9	8

⁵ Signal frequency without interference signal
 ⁶ PRO-RE (Z501S) adapter cable for test plug, for connecting earth probes (E-Set 3/4)
 ⁷ PRO-RE/2 (Z502T) adapter cable for test plug, for connecting the generator clamp (E-CLIP2)
 ⁸ Generator clamp: E-CLIP2 (Z591B)
 ⁹ Clamp meter: Z3512A (Z225A)
 ¹⁰ Where RE.sel/RE < 100 and RE.E/RE ≤ 100
 ¹² Where RE.H/RE ≤ 100 and RE.E/RE ≤ 100
 ¹⁴ Where 7. cor < 0.6 Q In ... 1b//0.5 Q is indicated

 12 Where d = 20 m 12 Where d = 2 m 14 Where Z $_{L-PE}$ < 0.6 Ω , l_k > $U_N/0.5 <math display="inline">\Omega$ is indicated 15 Only where RANGE = 20 k Ω 16 Only where RANGE = 50 k Ω or AUTO

PROFITEST MASTER Characteristic Values

Reference Conditions

Line voltage Line frequency Meas. quantity frequency Measured qty. waveform

Line impedance angle

Ambient temperature Relative humidity

Probe resistance

Supply power

Finger contact

 $\begin{array}{l} 230 \ V \pm 0.1 \ \% \\ 50 \ Hz \pm 0.1 \ \% \\ 45 \ Hz \ \ldots \ 65 \ Hz \\ Sine (deviation between effective and rectified value <math display="inline">\leq 0.1 \ \%) \\ \cos \phi = 1 \\ \leq 10 \ \Omega \\ 12 \ V \pm 0.5 \ V \\ + \ 23^{\circ} \ C \pm 2 \ K \\ 40\% \ to \ 60\% \\ For \ testing \ potential \ difference \\ to \ ground \ potential \\ \end{array}$

Power Supply

Standing surface insulation

Rechargeable batteries	8 each AA 1.5 V, we recommend only using the battery pack included in the standard equip- ment (pack of rechargeable batteries article no. Z502H)
Number of measurement	ts (standard setup with illumination)
– For R _{ISO}	1 measurement – 25 s pause: Approx. 1100 measurements
– For R _{LO}	Automatic polarity reversal / 1 Ω (1 measuring cycle) – 25 s pause: Approx. 1000 measurements
Battery test	Symbolic display of battery voltage
	BATE
Battery saver circuit	Display illumination can be switched off. The test instrument is switched off automatically after the last key opera- tion. The user can select the desired on-time.
Safety shutdown	If supply voltage is too low, the instru- ment is switched off, or cannot be switched on.
Recharging socket	Installed rechargeable batteries can be recharged directly by connecting a charger to the recharging socket: charger Z502R
Charging time	Charger Z502R: Approx. 2 hours *

* Maximum charging time with fully depleted rechargeable batteries. A timer in the charger limits charging time to no more than 4 hours.

Overload Capacity

R _{ISO}
U _{L-PE} , U _{L-N}
RCD, R_E , R_F
Z _{L-PE} , Z _{L-N}

1200 V continuous600 V continuous440 V continuous550 V (Limits the number of measurements and pause duration. If overload occurs, the instrument is switched off by means of a thermostatic switch.)

R_{LO}

Electronic protection prevents switching on if interference voltage is present

Fine-wire fuse protection

FF 3.15 A 10 s, fuses blow at > 5 A

Electrical Safety

Protection class	II
Nominal voltage	230/400 V (300/500 V)
Test voltage	3.7 kV 50 Hz
Measuring category	CAT III 500 V or CAT IV 300 V
Pollution degree	2
Fusing, L and N terminals	1 cartridge fuse-link ea. FF 3.15/500G 6.3 x 32 mm

Electromagnetic Compatibility (EMC)

Product standard	EN 61326-1	
Interference emission		Class
EN 55022		A
Interference immunity	Test Value	Feature
EN 61000-4-2	Contact/atmos. – 4 kV/8 kV	
EN 61000-4-3	10 V/m	
EN 61000-4-4	Mains connection – 2 kV	
EN 61000-4-5	Mains connection – 1 kV	
EN 61000-4-6	Mains connection – 3 V	
EN 61000-4-11	0.5 period / 100%	

Ambient Conditions

Accuracy	0 to + 40 °C
Operation	–5 to + 50 °C
Storage	-20 to +60 °C (without rechargeable batteries)
Relative humidity	Max. 75%, no condensation allowed
Elevation	Max. 2000 m

Mechanical Design

Display	Multiple display with dot matrix, 128 x 128 pixels
Dimensions	W × L × D: 260 × 330 × 90 mm
Weight	approx. 2.7 kg with rechargeable batteries
Protection	Housing: IP40, test probe: IP40 per EN 60529/DIN VDE 0470, part 1

Data Interfaces

Туре	USB slave for PC connection
Туре	RS 232 for barcode and RFID scanners
Туре	<i>Bluetooth</i> [®] for connection to PC (PROFITEST MTECH+ /MXTRA/ SECULIFE IP onlv)

Scope of delivery:

1 Test instrument

- 1 Earthing contact plug insert (country-specific)
- 2-pole measuring adapter and 1 cable for expansion into a 1 3-pole adapter (PRO-A3-II)
- 2 Alligator clips
- Shoulder strap 1
- Set of rechargeable batteries (Z502H) 1
- Battery charger Z502R 1
- 1 USB cable
- DAkkS calibration certificate 1
- Supplement Safety Information 1
- Condensed operating instructions* 1
- Detailed operating instructions for download from our website at www.gossenmetrawatt.com
- Card with registration key 1 for software

Special Functions with PROFITEST MPRO and PROFITEST MXTRA

(Rechargeable) Battery Powered Earthing Resistance Measurements

Earthing Resistance R_F

3-wire measuring method, probes and earth electrodes connected via PRO-RE adapter

4-wire measuring method, probes and earth electrodes connected via PRO-RE adapter

Selective Earthing Resistance R_F

(4-wire measuring method) Current clamp sensor connected directly, probes and earth electrodes connected via PRO-RE adapter

Earth Loop Resistance R_{Eloop}

2-clamp measurement:

Current clamp sensor connected directly, current clamp transformer connected via PRO-RE/2 adapter

Soil Resistivity Rho

Probes connected via PRO-RE adapter

慆

d

2-8:8-8

ê e

:F949494

 $>30_{\odot}$

102 6

Special Functions with PROFITEST MTECH+/MXTRA and SECULIFE IP

Tripping Test for Type B, AC/DC Sensitive RCDs 🖂 📼 with Rising DC Residual Current and Measurement of Tripping Current

With the selector switch in the I_F position, slowly rising current flows via N and PE. The momentary measured current value is continuously displayed. When the RCCB is

tripped, the last measured current value is displayed. A greatly reduced rate of increase is used for delayed RCCBs (type S).

Tripping Test for Type B, AC/DC Sensitive RCDs 🖂 📟 with Constant DC **Residual Current and Measurement of Tripping Time**

With the selector switch set to the respective nominal residual current, twice the selected nominal current flows via N and PE. Time to trip is measured for the RCCB and displayed.

Loop Resistance Measurement with Suppression of RCD Tripping

The test instruments make it possible to measure loop impedance in TN systems with type A, F and type AC RCCBs (10, 30, 100, 300, 500 mA nominal residual current).

The respective test instrument generates a DC residual current to this end, which saturates the RCCB's magnetic circuit. The test instrument then superimposes a measuring current which only demonstrates half-waves of like polarity. The

capable of detecting this measuring current, and is consequently not tripped during measurement.

Selective Earthing Resistance Measurement (mains powered)

Special Functions

Voltage Drop Measurement (at Z_{LN}) – ΔU Function

According to DIN VDE 100, part 600, voltage drop from the intersection of the distribution network and the consumer system to the point of connection of an electrical power consumer (electrical outlet or device connector terminals) should not exceed 4% of nominal line voltage.

Voltage drop calculation: $\Delta U = Z_{L-N} \bullet \text{ rated fuse current}$ ΔU as % = $\Delta U / U_{L-N}$

ZL-N Limits 910mΩ 5,99% OFFSET GUOFFSET 862mΩ ON OFF ZOFFSET ÷⊢ 230U fn 50,0Hz Uн

Special Functions PROFITEST MXTRA

Leakage Current Measurement with PRO-AB Adapter (PROFITEST MXTRA only)

Measurement of continuous leakage and patient auxiliary current per IEC 62353 (VDE 0750, part 1) / IEC 601-1 / EN 60 601-1:2006 (Medical electrical equipment -General requirements for basic safety) is possible with the help of the PRO-AB leakage current measuring adapter used as an accessory with the PROFITEST MXTRA test instrument.

As specified in the standards listed above, current values of up

In order to be able to fully cover this measuring range using the measurement input provided on the test instrument (2-pole current clamp input), the measuring instrument is equipped with range switching between transformation ratios of 10:1 and 1:1.

to 10 mA may be measured with this measuring adapter.

Measurement of the Impedance of Insulating Floors and Walls (standing surface insulation impedance) - Z_{ST} Function

The instrument measures the impedance between a weighted metal plate and earth. Line voltage available at the measuring site is used as an alternating voltage source. The Z_{ST} equivalent circuit is considered a parallel circuit.

230U fn 50,0Hz

Uм

250 N

wooden board

Testing of Insulation Monitoring Devices (IMDs) (PROFITEST MXTRA and SECULIFE IP only)

Insulation monitors are used in power supplies for which a single-pole earth fault may not result in failure of the power supply, for example in operating rooms or photovoltaic systems.

Insulation monitors can be tested with the help of this special function. After pressing the start button, an adjustable insulation resistance is activated between one of the two phases of the IT system to be monitored and ground to

this end. This resistance can be changed in the manual sequence mode with the help of the softkeys, and it can be varied automatically from R_{max} to R_{min} in the automatic operating mode.

Time, during which the momentary resistance value prevails at the system until the next change in value, is displayed. The IMD's display and response characteristics can be subsequently evaluated and documented with the help of the softkeys.

f 50,0Hz

ULEPE 116U

UL1L2 234V

Application of an adjustable

resistance between external

Start/Stop: press **STIART**

conductor and earth in the IT mains

Special Functions PROFITEST MXTRA

Determining Residual Voltage / Detecting Mains Fluctuations (PROFITEST MXTRA only)

The EN 60204 standard specifies that after switching supply power off, residual voltage between L and PE must drop to a value of 60 V or less within 5 seconds at all accessible, active components of a machine to which a voltage of greater that 60 V is applied during operation.

With the **PROFITEST MXTRA**, testing for the absence of voltage is performed as follows by means of a voltage measurement which involves measuring discharge time tu:

In the case of voltage dips of greater than 5% of momentary line voltage (within 0.7 seconds), the stopwatch is started and momentary undervoltage is displayed as Ures after 5 seconds and indicated by the red UL/RL diode.

>5% within 0,7 seconds •Permanent measurement

, tu.	
Å	BAT 🔊 ≱⊣⊨ 🕄 🕄 Ures
U	0,4 V (
Ures	0,1 V
ŧυ	0,2 s
	f<15,0Hz → 🖵

Special Functions PROFITEST MXTRA

Testing Residual Current Monitoring Devices (RCMs) (PROFITEST MXTRA only)

RCMs (residual current monitors) monitor residual current in electrical systems and display it continuously. As is also the case with residual current devices, external switching devices can be controlled in order to shut down supply power in the event that a specified residual current value is exceeded. However, the advantage of an RCM is that the user is informed of fault current within the system before shutdown takes place.

As opposed to individual measurement of $I_{\Delta N}$ and $t_A,$ measurement results must be evaluated manually in this case.

If an RCM is used in combination with an external switching device, the combination must be tested as if it were an RCD.

Intelligent Ramp (PROFITEST MXTRA only)

The advantage of this measuring function in contrast to individual measurement of $I_{\Delta N}$ and t_A is the simultaneous measurement of breaking time and breaking current by means of a test current which is increased in steps, during which the RCD is tripped only once.

The intelligent ramp is subdivided into time segments of 300 ms each between the initial current value (35% $\rm I_{\Delta N})$ and the final cur-

rent value $(130\% I_{\Delta N})$. This results in a gradation for which each step corresponds to a constant test current which is applied for no longer than 300 ms, assuming that tripping does not occur.

ទ្ធី

UIAN

ta

ÏΔ

RE

UN 230U

And thus both tripping current and tripping time are measured and displayed.

BAT 🔊

ska⊫⊫ ⊡⊡⊡

0.0

>0ms

<snu

<300ms

<3Ω

fn50.0Hz

3 ms

>1<u>5,0mA_</u><30,0mA

15.5 mH

v

ta+la

30mA

RCD

A.

Limits

→님

Testing the Operating States of Electric Vehicles at Charging Stations per IEC 61851 (PROFITEST MTECH+ & PROFITEST MXTRA only)

A charging station is an equipment designed for the charging of electric vehicles per

IEC 61851 which essentially consists of a plug connector, a cable protection, a residual current device (RCD), as well as a circuit breaker and a security communication system (PWM).

Depending on the place of installation and application, further functional features such as mains connection and meter may be included.

Simulation of operating states per IEC 61851with the MENNEKES test box (State A - E)

The MENNEKES test box only serves the purpose of simulating different operating states of an electric vehicle fictitiously connected with a charging station.

Special Functions PROFITEST MXTRA

Test Sequences for Report Generation of Fault Simulations on PRCDs type S and K with PROFITEST PRCD (PROFITEST MXTRA only):

- Three test sequences are preconfigured:
- PRCD-S (single phase/3-pole)
 - PRCD-K (single phase/3-pole)
 - PRCD-S (three-phase/5-pole)
- The test instrument guides you through all test steps in a semi-automatic fashion:

Single phase PRCDs:

PRCD-S: 11 test steps PRCD-K: 4 test steps PRCD-S: 18 test steps

3-phase PRCDs: PRCD-S: 18 test steps Each test step is assessed and evaluated by the user

- (OK/not OK) for subsequent report generation purposes.
- Measurement of protective conductor resistance of the PRCD by means of function R_{LO} at the test instrument.
- Measurement of insulation resistance of the PRCD by means of function R_{ISO} at the test instrument.
- Trip test with nominal fault current by means of function I_F
 i at the test instrument.
- Measurement of tripping time by means of function ${\rm I}_{\Delta {\rm N}}$ at the test instrument.
- Varistor test with PRCD-K: measurement via ISO ramp.

Further information is included in the data sheet for the PROFITEST PRCD.

Selecting the PRCD under Test

Example Simulation Interruption

Special Functions (all Types)

Automatic Test Sequence Function

If the same order of tests with subsequent report generation is to be performed repeatedly, as is, for example, specified by certain standards, we recommend using test sequences.

With the help of test sequences it is possible to compile automatic test procedures on the basis of the manual individual measurements. A test sequence consists of up to 200 individual test steps which have to be processed one after the other.

The test sequences are created at a PC by means of the ETC software and are then transferred to the **PROFITEST MPRO** or **PROF-ITEST MXTRA** test instruments.

The measurement parameters are also configured at a PC. However, they can still be modified at the test instrument during the test procedure before the respective measurement is launched.

Interface (PROFITEST MTECH+/MXTRA/SECULIFE IP only)

If your PC is equipped with a *Bluetooth*[®] interface, wireless communication is possible between the test instrument and ETC user software for the transfer of data and test structures.

Furthermore, it is possible to connect a Bluetooth keyboard (Logitech).

IZYTRONIQ

The PC application software **IZYTRONIQ** is a database software for

the complete management and documentation of testing.

IZYTRONIQ allows for the management and documentation of measured values for the following test instruments of the **PROFITEST MASTER** series:

PROFITEST MPRO, PROFITEST MTECH+PROFITEST MTECH+, PROFITEST MXTRA, SECULIFE IP as from firmware version 3.1.0 in each case.

For further information on the application software please refer to the internet at www.izytron.com

Report Generation Accessories

See also separate ID systems data sheet.

Barcode scanner for connection to RS 232 port at tester – Z502F

Barcode and label printer for USB connection to a PC - Z721E

Barcode/label printer for connection to a PC, for self-adhesive, smudge-proof barcode labels, for identifying devices and system components. Devices and system components can be logged by our test instruments, and acquired measured values can be allocated to them with the scanner.

SCANBASE RFID reader for connection to RS 232 port at tester - Z751G

Accessory Plug Inserts and Adapters

Holder for test probes and measuring adapter PRO-HB (Z501V)

Country specific Plug Inserts PRO-Schuko

Country specific Plug Insert PRO-GB-USA (Z503B)

Test Probes (L 68 mm, \varnothing 2,3 mm) Set-Probes (Z503F)

Flat test clip for contacting on busbars PRO-PE Clip (Z503G)

The Z751G RFID reader is preprogrammed to scan the fol-

lowing RFD tags.						
Frequency	Standard	Туре	Quantity per Package			
13.56 MHz	ISO 15693	approx. 22 mm dia., self-adhesive	500 pieces			
13.56 MHz	ISO 15693	approx. 30 x 2 mm dia. with 3 mm hole	500 pieces			
13.56 MHz	ISO 15693	Pigeon ring, approx. 10mm dia.	250 pieces			
	13.56 MHz 13.56 MHz	13.56 MHz ISO 15693	FrequencyStandardType13.56 MHzISO 15693approx. 22 mm dia., self-adhesive13.56 MHzISO 15693approx. 30 x 2 mm dia. with 3 mm hole13.56 MHzISO 15693Pigeon ring, approx. 10mm dia.			

Power Supply Accessories

3-Phase Current Adapters 5-pole

A3-16, A3-32 and A3-63 3-phase adapters are used for trouble-free connection of test instruments to 5pole CEE outlets. The three variants differ with regard to plug size, which corresponds respectively to 5-pole CEE outlets with current ratings of 16, 32 and 63 A. Phase sequence is indicated with lamps at all three variants. Testing the effectiveness of safety

measures is conducted via five 4 mm contact protected sockets.

3-Phase Current Adapter 7-pole

A3-16 Shielded and A3-32 Shielded 3-phase adapters are used for trouble-free connection of test instruments to 7-pole CEE outlets. The two variants differ with regard to plug size, which corresponds respectively to 7-pole CEE outlets with current ratings of 16 and 32 A. Testing the effectiveness of safety measures is conducted via seven 4 mm sockets with touch protection.

Variable Plug Adapter Set

Socket sight

Three self-retaining, contact protected test probes for the connection of measurement cables with 4 mm banana plugs, or with contact protected plugs for sockets with an opening of 3.5 mm to 12 mm, e.g. CEE, Perilex sockets etc. For example,

the test probes also fit the square PE jacks on Perilex sockets. Maximum allowable operating voltage: 600 V per IEC 61010.

Plug sight

3-phase test adapter PROFITEST REMOTE (M514R) for PROFITEST MTECH+ IQ and MXTRA IQ

ment of loop and line impedance as well as insulation resistance without any bothersome replugging or exchanging of cables, etc..

For the measure-

PRO-AB Leakage Current Measuring Adapter for PROFITEST MXTRA and SECULIFE IP

ISO Calibrator 1 (M662A)

KS24 Cable Set

The KS24 cable set includes a 4 m long extension cable with a permanently attached test probe at one end and a contact protected socket at the other end, as well as an alligator clip which can be plugged onto the test probe.

TELEARM 120 Telescoping Rod

Case TELEARM

Floor Probe

The 1081 floor probe makes it possible to measure the resistance of insulating floors in accordance with DIN VDE 0100, part 600, and EN 1081.

WZ12C (Z219C)

Current clamp sensor for leakage current, selectable measuring ranges: 1 mA to 15 A, 3% and 1 A to 150 A, 2% Transformation ratios: 1 mV/mA, 1 mV/A

METRAFLEX P300 (Z502E)

Flexible current clamp sensor for selective earthing resistance measurement 3/30/300 A, 1 V / 100 mV / 10 mV/A

Earthing Resistance Measurement Accessories

PRO-RE/2 Clamp Adapter (Z502T)

E-Clip 2 Clamp Generator (Z591B)

Output signal: 0.2 mA to 1.2 A Equipped with laboratory safety plug inputs

AC Current Sensor Clamp (Z3512A)

Adapter which is mounted to the test plug allowing for connection of the E-Clip 2 generator clamp for 2clamp or ground-loop earthing resistance measurement.

2-clamp or ground loop measurement is thus made possible.

Earth electrodes, auxiliary earth electrodes, probe and auxiliary probe are connected to the tester via the banana plug sockets, and thus via the adapter which is mounted to the test plug.

Measuring range: 0.2 A to 1200 A Measuring category: 600 V CAT III Max. cable dia.: 52 mm Transformation ratio: 1000 A/1A Frequency range: 40 Hz to 5 kHz

> Switchable measuring ranges: 1 mA to 1/100/ 1000 A~ Transformation ratios: 1 V/A, 100mV/ A, 10 mV/A, 1 mV/A

TR25II Cable reel (Z503X)

TR50II Cable reel (Z503Y)

SP500Earth Drill (Z503Z)

25 m measurement cable coiled onto a plastic drum. Connection to the inside end of the cable is made possible with two sockets integrated into the drum. The other end is equipped with a banana plug.

Cable resistance can be compensated for with the rotary selector switch in the R_{LO} position.

50 m measurement cable coiled onto a plastic drum. Connection to the inside end of the cable is made possible with two sockets integrated into the drum. The other end is equipped with a banana plug.

Cable resistance can be compensated for with the rotary selector switch in the R_{LO} position.

E-SET BASIC (Z593A)

Accessory Cases and Trolleys

SORTIMO L-BOXX GM (Z503D)

Foam insert for SORTIMO L-BOXX GM (Z503E)

Plastic system case Outside dimensions: $W \times H \times D$ $450 \times 255 \times 355$ mm

Foam insert Z503E for tester and accessories, has to be ordered seperately, see below.

E-SET PROFESSIONAL (Z592Z)

Profi-Case (Z502W)

Outside dimensions: H \times W \times D 390 \times 590 \times 230 mm

Gossen Metrawatt GmbH

E-CHECK Case (Z502M)

Sample Contents

F2000 Universal Carrying Pouch (Z700D)

Outside dimensions: W \times H \times D 380 \times 310 \times 200 mm (without buckles, handle and carrying strap)

Trolley for Profi-Case (Z502B) and E-CHECK Case (Z502N)

Folded-up dimensions: $395 \times 150 \times 375$ mm

Ever-ready case for PROFITEST MASTER (Z502X)

F2020 Large Universal Carrying Pouch (Z700F)

Outside dimensions: W \times H \times D 430 \times 310 \times 300 mm (without buckles, handle and carrying strap)

E-Mobility Accessories

PRO-TYP I (Z525B)

Vehicle Simulation (CP)

Vehicle states A through E are selected with a rotary switch. **Cable Simulation (PP)** via permanently wired cable coding **Fault Simulation** Simulation of a shortcircuit between CP and PE by means of a rotary switch Indication of Phase Voltages via LEDs

PRO-TYP II (Z525A)

Vehicle Simulation (CP)

Vehicle states A through E are selected with a rotary switch.

Cable Simulation (PP) The various codings for charging cables with 13, 20, 32 and 63 A, as well as "no cable connected", can be simulated with the help of a rotary switch.

Fault Simulation Simulation of a shortcircuit between CP and PE by means of a rotary switch

Indication of Phase Voltages via LEDs

Depending on the charging station, either one or three phases can be active.

Testing of electrical charging stations with permanently connected charging cable due to extended CP test pin

بمامير ايماح

Order Information			Designation	Туре	Article Number
Designation	Туре	Article Number	Safety Clip red and blue with hock, 1 kV CAT IV, 20 A	Safety Clip	Z503W
PROFITEST MASTER Instrument Variants	JF-		Flat test clip for fast and safe contacting on bus-		
Universal protective measures test instrument			bars. Powerful contacting on the front and rear		
per EN 61557, sections 1, 2, 3, 4, 5, 6, 7			of the busbars by means of established Multi-		
and 10 with integrated memory and insulation			lam. Fixed Ø 4 mm socket in the pressure grip handle section, to fit spring-loaded Ø 4 mm		
measurement up to 1000 V as well as selec-			plugs with rigid insulating sleeve. 1000 V CAT		
tive earth measurement with current clamps			IV/32 A	PRO-PE Clip	Z503G
as optional accessories, with DAkkS calibra-					20000
tion certificate and IZYTRONIQ BUSINESS	PROFITEST MPRO		2 magnetic measurement contacts with con- tact protection – Set with magnetic holder,		
Starter	IQ	M535C	measurement contacts 5,5 mm in diameter		
Universal protective measures test instrument			insulated, CAT III 1.000 V / 4 A, temperature		
per EN 61557, sections 1, 2, 3, 4, 5, 6, 7			between -10 °C and 60 °C, under standard		
and 10 with integrated memory and insulation			conditions and flat-head screws holding force		
measurement up to 1000 V as well as addi- tional tripping test for AC/DC sensitive RCDs			1.200 g vertical to contact area; measuring in-	Set 3 – Magn. Mea-	
and loop impedance measurement without			strument connector: 4 mm sockets for PRO-A3-II	suring Tips	Z502Z
tripping the RCD, e-mobility test, Bluetooth in-			With 10 m cable based on 2-wire measuring tech-		
terface, DAkkS calibration certificate and	PROFITEST		nology for PE and similar measurements, 300 V /		
IZYTRONIQ BUSINESS Starter	MTECH+ IQ	M535B	16 A CAT IV	PRO-RLO-II	Z501P
Universal protective measures test instrument			With 3 connector cables for any connection stan-		
per EN 61557, sections 1, 2, 3, 4, 5, 6, 7			dards, 300 V / 16 A, CAT IV	PRO-UNI-II	Z501R
and 10 with integrated memory and insulation			5-pole 3-phase adapter for 16 A CEE outlets	A3-16	GTZ3602000R000
measurement up to 1000 V as well as addi-			5-pole 3-phase adapter for 32 A CEE outlets	A3-32	GTZ3603000R000
tional tripping test for AC/DC sensitive RCDs,			5-pole 3-phase adapter for 63 A CEE outlets	A3-63	GTZ3604000R000
loop impedance measurement without trip-			Three-phase adapter shielded,		
ping the RCD, selective earth measurement with current clamps as optional accessories,			7-pin for CEE socket outlets 16 A, CAT III		
testing of IMDs and RCMs, Bluetooth inter-			300 V – 10 A	A3-16 Shielded	Z513A
face, DAkkS calibration certificate and IZY-	PROFITEST MX-		Three-phase adapter shielded,		
TRONIQ BUSINESS Starter	TRA IQ	M535D	7-pin for CEE socket outlets 32 A, CAT III	AD DO Chielded	75100
Universal protective measures test instrument			300 V – 10 A	A3-32 Shielded	Z513B
per EN 61557, sections 1, 2, 3, 4, 5, 6, 7			Variable Plug Adapter Set	Z500A	Z500A
and 10 with integrated memory and insulation			Calibration adapter for testing of the accuracy of mea-		
measurement up to 1000 V as well as addi-			suring instruments for insulation resistance and low- value resistors	ISO Calibrator 1	M662A
tional tripping test for AC/DC sensitive RCDs				ISO Calibrator 1	IVIOUZA
and loop impedance measurement, testing of			Leakage current measuring adapter for PROFIT - EST MXTRA and SECULIFE IP	PRO-AB	Z502S
IMDs, Bluetooth interface, DAkkS calibration				FNU-AD	23023
certificate and IZYTRONIQ BUSINESS Starter	SECULIFE IP IQ	M535E	Accessories		
	0100101010	moool	Extension cable, 4 m	KS24	GTZ3201000R000
Test Instrument Power Supply Accessories	3		Telescoping rod for RLO and RISO measure-	TELEARM 120 D	Z505C
8 LSD NiMH rechargeable batteries with re-	MASTER Battery		ment, CAT III 600 V / CAT IV 300 V, 1 A, re-		
duced self-discharging (AA), with sealed cells	Set	Z502H	tracted/extended 53,3 cm/120 cm, 190 g		
Broad-range charger for charging batteries			Telescoping rod for RLO and RISO measure-	TELEARM 180 D	Z505D
included in the PROFITEST MTECH+, MPRO,			ment, CAT III 600 V / CAT IV 300 V, 1 A, re-		
MXTRA and SECULIFE IP	PROFITEST MAS-		tracted/extended 73,5 cm/180 cm, 250 g		
Input: 100 to 240 V AC	TER	75000	Case TELEARM for Telearm 120/180, 920 x	Case TELEARM	Z505E
Output: 16.5 V DC, 1 A	Charger	Z502R	170 mm		
			Triangular probe for floor measurements in		
Accessory Plug Inserts and Adapters			accordance with EN 1081 and DIN VDE 0100	1081 Probe	GTZ3196000R000
Holder for test probes and measuring adapter	PRO-HB	Z501V	Current clamp sensor for leakage current,		
Earth contact plug insert (Schuko): D, A, NL, F		077000000000000000000000000000000000000	switchable: 1 mA to 15 A, 3% and 1 A to	WZ100 D	70100
etc.	PRO-Schuko	GTZ3228000R0001	150 A, 2%	WZ12C D	Z219C
same as PRO-Schuko, however with angled	55.0.11	75004	Flexible AC current sensor, 3, 30, 300 A, 1 V,		
earth-contact plug	PRO-W	Z503A	100 mV, 10 mV / A, with batteries, probe		Z502E
Plug insert per SEV: CH	PRO-CH	GTZ3225000R0001	length: 45 cm	METRAFLEX P300	ZJUZĽ
Plug insert with adapters for GB & USA	PRO-GB/USA-Set	Z503B			
Plug insert for South Africa	PRO-RSA	Z501A	Accessory Cases and Trolleys	Francisco C	1
3-phase test adapter for PROFITEST MTECH+			Ever-ready case with bags for accessories	Ever-ready Case	
IQ and MXTRA IQ	REMOTE	M514R		PROFITEST MAS- TER	Z502X
2/3-pole measuring adapter for 3-phase and		7	Aluminum opporter test instrument and	TLN	LJUZA
rotating-field systems, 300 V/1 A CAT IV with			Aluminum case for test instrument and ac- cessories	E-CHECK Case	Z502M
safety cap					
600 V/1 A CAT III with safety cap		75010	The E-CHECK case can be mounted to the	Trolley for E-CHECK Case	Z502N
600 V/16 A CAT II without safety cap	PRO-A3-II	Z5010	trolley.		
same as PRO-A3-II, however with straight ca-		75020	Universal carrying pouch	F2000 ^D	Z700D
bles of 10m each instead of coil cables	PRO-A3-II ncc	Z503C	Large universal carrying pouch	F2020	Z700F
Cat Drahas OAT III / 000 V/ 4 A					
Set-Probes CAT III / 600 V, 1 A, working range of the probes 68 mm – diameter 2,3 mm	Set-Probes	Z503F	Plastic system case	SORTIMO L-BOXX GM	Z503D

Designation	Туре	Article Number	Designation	Туре	Article Numbe
oam insert for SORTIMO L-BOXX GM with di- ider for PROFITEST MASTER	Foam SORTIMO L-BOXX Profitest M	Z503E	Test adapter for testing portable safety switches (types PRCD-K and PRCD-S)		
rofi-hardcase with imprint and deviders for			with the help of the		
ets with Profitest Master and accessories			PROFITEST MXTRA test instrument		
ncl. trolleyholder	Profi-Case	Z502W	(not included)	PROFITEST PRCD D	M512R
			Starter Packages		
arthing Resistance Measurement Access	ories		consisting of PROFITEST MTECH+ IQ, Vario-		
Measuring adapter for connecting a second	01100		Plug-Set, SORTIMO L-BOXX, Foam SORTIMO		
clamp (generator clamp), allows for 2-clamp			L-BOXX, Set-Probes, Battery Pack Master and	Starter package	
measuring method (ground loop measure-			charger plus IZYTRONIQ BUSINESS ADVANCED	TECHplus IQ	M536A
ment)	PRO-RE-2	Z502T	consisting of PROFITEST MTECH+ IQ, Vario-		
Connection adapter for earthing accessories		20021	Plug-Set, SP350 Earth Drill, Drum TR50, PRO		
for 3/4-wire measurement and selective			W, PRO-RLO II, Set-Probes, Profi-Case, Battery		
earthing resistance measurement	PRO-RE	Z501S	Pack Master and charger plus IZYTRONIQ	Master package	
Generator clamp for 2-clamp measuring	THU-HL	23013	BUSINESS PROFESSIONAL	TECHplus IQ	M536B
method (ground loop measurement), transfor-			Consisting of PROFITEST MXTRA IQ, VARIO-		
mation ratio: 1000 A / 1 A, current measuring			STECKER-Set, plastic system case SORTIMO L-		
range: 0.2 A to 1200 A, output signal: 0.2 mA			BOXX GM with foam insert, MASTER Battery Set		
to 1.2 A	E-CLIP 2	Z591B	and MPRO MXTRA Charger, set of test probes plus	XTRA Starter Pack-	
Current clamp sensor for selective earth mea-		20010	IZYTRONIQ BUSINESS ADVANCED	age IQ	M536C
surement and as clamp meter for 2-clamp			Consisting of PROFITEST MXTRA IQ , VARIO-		
measuring method (ground loop measure-			STECKER-Set, Profi Case, PRO-W plug insert,		
ment), switchable measuring ranges: 0 to 1 /			PRO-RLO-II, MASTER Battery Set and MPRO		
$100 / 1000 \text{ A} \sim \text{AV} \sim \pm (0.7\% \text{ to } 0.2\%)$	Z3512A ^D	Z225A	MXTRA Charger, set of test probes plus IZYTRO-	XTRA Master Pack-	
Cable reel for low-resistance and earth-resis-	20012A	LLLON	NIQ BUSINESS PROFESSIONAL	age IQ	M536D
ance measurement, 25 m	TR25II	Z503X	Consisting of PROFITEST MXTRA IQ, VARIO-		
-	InzJII	20037	STECKER-Set, Profi Case, leakage current measur-		
Cable reel for low-resistance and earth-resis-	TR50II	75000	ing adapter PRO-AB, MASTER Battery Set and		
tance measurement, 50 m		Z503Y	MPRO MXTRA Charger, set of test probes plus IZY-	XTRA MED Pack-	
Earth Drill 500 mm	SP500	Z503Z	TRONIQ BUSINESS ADVANCED	age IQ	M536E
Accessories for earthing measurement consist-			Consisting of PROFITEST MXTRA IQ , VARIO-		
ing of 1 carrying pouch, 4 earth spikes 500 mm,			STECKER-Set, Profi Case, PRO-W plug insert,		
1 x measuring lead 40 m blue on cable drum			generator clamp E-Clip 2 and Current clamp		
with hand strap, 1 x measuring lead 20 m red			sensor for earth measurement Z3512A, mea-		
on cable drum with hand strap, 1 x measuring			suring adapter for connecting a second clamp		
lead 5 m black, 1 x measuring lead 5 m green, 1 x test clamp with black 4 mm socket, 1 x test			PRO-RE-2, MASTER Battery Set and MPRO		
clamp with green 4 mm socket, 1 x hammer, 1			MXTRA Charger, set of test probes plus IZY-	XTRA Profi Package	
c roller tape measure, 1 x duster, 1 x writing pad	F-SET		TRONIQ BUSINESS PROFESSIONAL	IQ	M536F
with pen	PROFESSIONAL	Z592Z			
Accessories for earthing measurement consist-	THUI LOUIDINAL	LUULL	E-Mobility Accessories		
ng of 1 rugged outdoor carrying pouch,			Single phase test adapter	PRO-TYP I D	Z525B
2 earth spikes 420 mm, 1x measuring lead			with type 1 plug		
40 m blue on cable drum with hand strap,			Single and 3-phase test adapter	PRO-TYP II D	Z525A
1 kV CAT III, 1x measuring lead 20 m red on			with type 2 plug	-	
cable drum with hand strap, 1 kV CAT III,			Single and 3-phase test adapter	PRO-TYP II-CH	Z525D
1x measuring lead 2 m black, 1 kV CAT IV,			with type 2 plug; Version with swiss type socket		LOLOD
1x measuring lead 2 m green, 1 kV CAT IV,			Report Generating Accessories	1	1
1x measuring lead 30 cm red, 1 kV CAT IV,			See separate ID systems data sheet regarding ba	reada connara larinta	re and DEID read
1x measuring lead 30 cm blue, 1 kV CAT IV,					is and heid read
1x test clamp with black 4 mm socket,			Barcode scanner for RS 232 connection with		75005
Ix test clamp with green 4 mm socket	E-SET BASIC	Z593A	roughly 1 m coil cable	ner for Barcodes	Z502F
Earth testing set:			RFID reader/writer	SCANBASE RFID	Z751G
drum with 25 m measurement cable			^D Data sheet available		
2 drums with 50 m measurement					
cable each, 4 measurement cables,			For additional information regar	ding accessor	ies please
3 x 0.5 m long, 1 x 2 m long, 1 test clamp, 4			refer to:	0	
earth drills, each 350 mm long, 1 dust cloth, 2					
bads of earth testing measurement data forms	E-Set 5	Z590B	 our Measuring and Test Tec 	hnology catalo	bg
	1		U U U U U U U U U U U U U U U U U U U		-

© Gossen Metrawatt GmbH

Edited in Germany • Subject to change without notice / Errors excepted • A PDF version is available on the Internet

All trademarks, registered trademarks, logos, product names and company names are the property of their respective owners.

GOSSEN METRAWATT Gossen Metrawatt GmbH Südwestpark 15 90449 Nürnberg • Germany

Phone+49 911 8602-0Fax+49 911 8602-669E-Mailinfo@gossenmetrawatt.comwww.gossenmetrawatt.com