PROFITEST Master IQ Series
 PROFITEST MTECH+, Mpro, Mxtra, SECULIFE Ip
 DIN VDE 0100/IEC 60364-6 Testers

Testing of residual current devices (RCCBS)

- Measurement of contact voltage without tripping the RCCB.

Contact voltage is measured with reference to nominal residual current using $1 / 3$ of the nominal residual current value.

- Testing for N-PE reversal
- Tripping test with nominal residual current, trip time measurement
- Testing of equipment and RCCBs with rising residual current including indication of tripping current and contact voltage
- Testing of RCCBs with nominal current of $1 /\left.2 \bullet\right|_{\Delta N},\left.1 \bullet\right|_{\Delta N},\left.2 \bullet\right|_{\Delta N}$, ($5 \cdot I_{\Delta N}$ to $300 \mathrm{~mA}:$ Mpro/MxTRA/SECULIFE IP to 100 mA : MTECH+)
- Intelligent ramp (PROFITEST MXTRA only): simultaneous measurement of breaking current $I_{\Delta N}$ and breaking time t_{A}
- Testing of selective \mathbf{S} SRCDs, PRCDs (SCHUKOMAT, SIDOS or comparable), type G/R, type AC, type A, F; type B, B+ and type EV (exept MPro)
- Testing of RCCBs which are suitable for pulsating residual direct current; testing is conducted with positive or negative half-waves.
- Creation of test sequences (IZYTRONIQ)
- Intelligent data transmission Bidirectional interface to DDS-CAD for electrical planning

- Simulation of operating states of electric vehicles at electric charging stations of different manufacturers (MTECH+ and MxTRA only)

Large Voltage and Frequency Ranges

A broad-range measuring device allows for use of the test instrument in all alternating and 3-phase electrical systems with voltages from 65 to 500 V and frequencies of 16 to 400 Hz .

Loop and Line Impedance Measurement

Measurement of loop and line impedance can be performed in the 65 to 500 V range. Conversion to short-circuit current is based on the respective nominal line voltage, insofar as the measured line voltage is within the specified range. PROFITEST MASTER measuring error is also taken into account for conversion. Outside of this range, short-circuit current is calculated on the basis of momentary line voltage and measured impedance.
Measurement of Insulation Resistance Using Nominal Voltage, with Variable or Rising Test Voltage
Insulation resistance is usually measured with a nominal voltages of 500,250 or 100 V . A test voltage which deviates from nominal voltage, and lies within a range of $20 / 50$ to 1000 V , can be selected for measurements at sensitive components, as well as systems with voltage limiting devices.
Measurement can be performed with a constantly rising test voltage in order to detect weak points in the insulation and determine tripping voltage for voltage limiting devices.
Voltage at the device under test and any triggering/breakdown voltage appear at the test instrument's display.

Standing-Surface Insulation Measurement

Standing-surface insulation measurement is performed with momentary line frequency and line voltage.

Low-Resistance Measurement

Bonding conductor resistance and protective conductor resistance can be measured with a test current of $\geq 200 \mathrm{~mA}$ DC, automatic polarity reversal of the test voltage and selectable direction of current flow. If the adjustable limit value is exceeded, an LED lights up.

Earthing Resistance Measurement

In addition to measurement of the overall resistance of an earthing system, selective measurement of the earthing resistance of an individual earth electrode is also possible, without having to disconnect it from the earthing system. A current clamp sensor available as an accessory is utilized to this end.
Furthermore, the PROFITEST MPRO and the PROFITEST MXTRA allow for battery powered earthing resistance measurements: $3 / 4$-pole and earth loop resistance measurements.

Universal Connector System

The interchangeable plug inserts and 2-pole plug-in adapter which can be expanded to 3 -poles for phase sequence testing allows for use of the test instrument all over the world.

Special Features

- Display of approved fuse types for electrical systems
- Energy meter start-up testing
- Measurement of biasing, leakage and circulating current of up to 1 A , as well as working current of up to 1000 A with current clamp sensor (available as an accessory)
- Phase sequence measurement (including highest line-to-line voltage)
- Optional connection of a Bluetooth keyboard (Logitech) and a Bluetooth barcode reader in preparation

PROFITEST Mtech+, Mpro, Mxtra, SECULIFE Ip DIN VDE 0100/IEC 60364-6 Testers

Display with Selectable Language

The LCD panel consists of a backlit dot matrix at which menus, setting options, measurement results, tables, instructions and error messages, as well schematic diagrams appear.
The display can be set to the desired language depending on the country in which the test instrument is used:
D, GB, I, F, E, P, NL, S, N, FIN, CZ or PL

Operation

Device functions are selected directly with the help of a rotary selector knob. Softkeys allow for convenient selection of subfunctions and parameter settings. Unavailable functions and parameters are automatically prevented from appearing at the display.
The start and RCD tripping functions included directly on the instrument are identical to the functions of the two keys located on the test plug, allowing for easy measurement at difficult to access locations.
Schematic diagrams, measuring ranges and help texts cab be displayed for all basic functions and sub-functions.

Phase Tester

Protective conductor potential is tested after starting a test sequence and touching the contact surface for finger contact. The PE symbol appears at the display if a potential difference of more than 25 V is detected between the contact surface and the protective contact at the mains plug.

Error Indication

- The instrument automatically detects instrument-to-system connection errors, which are indicated in a connection pictograph.
- Errors within the electrical system (no mains or phase voltage, tripped RCD) are indicated at 3 LEDs and by means of popup windows at the tilting LCD panel.

Battery Monitoring and Self-Test

Battery monitoring is conducted while the instrument is subjected to an electrical load. Results are displayed both numerically and with a symbol. Test images can be called up one after the other, and LEDs can be tested during the self-test. The instrument is shut down automatically when the rechargeable batteries are discharged. A microprocessor controlled charging circuit is used to assure safe charging of rechargeable NiMH or NiCd batteries.

Data Entry at the RS 232 Port

Data can be read in via a barcode or RFID scanner connected to the RS 232 port, and comments can be entered with the help of the softkeys.

IZYTRONIQ User Software for PC

IZYTRONIQ is a test software developed from scratch. It enables the user to visualize and manage the entire testing procedure for all our test instruments and to document it in an audit-proof manner. For the first time, it is thus possible to combine the test and measurement data from a great variety of test instruments and multimeters in one test and generate one report report thereof. The intuitive user guidance and modern design provide for quick access to all functions.
The software is available in different sizes and versions for trades, industry and vocational training purposes.

Overview of Features Included with Device Variants

PROFITEST ... (Article Number)				
Testing of residual current devices (RCDs)				
U_{B} measurement without tripping RCD	\checkmark	\checkmark	\checkmark	\checkmark
Tripping time measurement	\checkmark	\checkmark	\checkmark	\checkmark
Measurement of tripping current I_{F}	\checkmark	\checkmark	\checkmark	\checkmark
Selective, SRCDs, PRCDs, type G/R	\checkmark	\checkmark	\checkmark	\checkmark
AC/DC sensitive RCDs, type B, B+	-	\checkmark	\checkmark	\checkmark
DC sensitive RDC-DDs and RCMBs	\checkmark	\checkmark	\checkmark	\checkmark
Testing of IMDs	-	-	\checkmark	\checkmark
Testing of RCMs	-	-	\checkmark	-
Testing for N-PE reversal	\checkmark	\checkmark	\checkmark	\checkmark
Measurement of loop impedance $\mathrm{Z}_{\text {L-PE }} / \mathrm{Z}_{\mathrm{L}-\mathrm{N}}$				
Fuse table for systems without RCDs	\checkmark	\checkmark	\checkmark	\checkmark
Without tripping the RCD, fuse table	-	\checkmark	\checkmark	\checkmark
With 15 mA test current ${ }^{1)}$ without tripping the RCD	\checkmark	\checkmark	\checkmark	\checkmark
Earthing resistance R_{E} (mains operation) I-U measuring method ($2 / 3$-wire measuring method via measuring adapter: 2-wire/2-wire + probe)	\checkmark	\checkmark	\checkmark	\checkmark
Earthing resistance R_{E} (battery operation) 3 or 4 -wire measurement via PRO-RE adapter	\checkmark	-	\checkmark	-
Soil resistivity ρ_{E} (battery operation) (4-wire measurement via PRO-RE adapter)	\checkmark	-	\checkmark	-
Selective earthing resistance R_{E} (mains operation) with 2-pole adapter, probe, earth electrode and current clamp sensor (3-wire measuring method)	\checkmark	\checkmark	\checkmark	\checkmark
Selective earthing resistance R_{E} (battery operation) with probe, earth electrode and current clamp sensor (4-wire measuring method via PRO-RE adapter and current clamp sensor)	\checkmark	-	\checkmark	-
Earth loop resistance $\mathrm{R}_{\mathrm{E} \text { OOP }}$ (battery operation) with 2 clamps (current clamp sensor direct and current clamp transformer via PRO-RE/2 adapter)	\checkmark	-	\checkmark	-
Measurement of equipotential bonding R_{LO}, automatic polarity reversal	\checkmark	\checkmark	\checkmark	\checkmark
Insulation resistance $\mathrm{R}_{\text {ISO }}$, variable or rising test voltage (ramp)	\checkmark	\checkmark	\checkmark	\checkmark
Voltage $\mathrm{U}_{\text {L-N }} / \mathrm{U}_{\text {L-PE }} / \mathrm{U}_{\mathrm{N}-\mathrm{PE}} / \mathrm{f}$	\checkmark	\checkmark	\checkmark	\checkmark
Special measurements				
Leakage current (with clamp) $\mathrm{I}_{\mathrm{L}}, \mathrm{I}_{\mathrm{AMP}}$	\checkmark	\checkmark	\checkmark	\checkmark
Phase sequence	\checkmark	\checkmark	\checkmark	\checkmark
Earth leakage resistance $\mathrm{R}_{\mathrm{E}(\mathrm{ISO})}$	\checkmark	\checkmark	\checkmark	\checkmark
Voltage drop ($\Delta \mathrm{U}$)	\checkmark	\checkmark	\checkmark	\checkmark
Standing-surface insulation $\mathrm{Z}_{\text {ST }}$	\checkmark	\checkmark	\checkmark	\checkmark
Meter start-up (kWh-Test)	\checkmark	\checkmark	\checkmark	-
Leakage current with PRO-AB adapter (IL)	-	-	\checkmark	\checkmark
Residual voltage test (Ures)	-	-	\checkmark	-
Intelligent ramp (ta $+\Delta \mathrm{l}$)	-	-	\checkmark	-
Electric vehicles at charging stations (IEC 61851)	-	\checkmark	\checkmark	-
Report generation of fault simulations on PRCDs with PROFITEST PRCD adapter	-	-	\checkmark	-
Features				
Selectable user interface language ${ }^{2}$	\checkmark	\checkmark	\checkmark	\checkmark
Memory (database for up to 50,000 objects)	\checkmark	\checkmark	\checkmark	\checkmark
Automatic test sequence function	\checkmark	\checkmark	\checkmark	\checkmark
RS 232 port for RFID/barcode scanner	\checkmark	\checkmark	\checkmark	\checkmark
USB port for data transmission	\checkmark	\checkmark	\checkmark	\checkmark
Interface for Bluetooth ${ }^{\text {® }}$	-	\checkmark	\checkmark	\checkmark
IZYTRONIQ BUSINESS Starter database and report software for PC	\checkmark	\checkmark	\checkmark	\checkmark
Measuring category: CAT III $600 \mathrm{~V} / \mathrm{CAT}$ IV 300 V	\checkmark	\checkmark	\checkmark	\checkmark
DAkkS calibration	\checkmark	\checkmark	\checkmark	\checkmark

[^0]
PROFITEST MTECH+, Mpro, Mxtra, SECULIFE IP DIN VDE 0100/IEC 60364-6 Testers

Data Interface

Measurement data are transmitted to a PC via the integrated USB port, at which they can be printed in report form and archived.

Software update

The test instrument is always kept current thanks to firmware which can be updated via the USB port. Software is updated during the course of recalibration by our service department, or directly by the customer.

Sample Displays

PROFITEST MASTER and SECULIFE IP Test Instruments
Softkeys allow for convenient selection of sub-functions and parameter settings. Unavailable sub-functions and parameters are automatically prevented from appearing at the display.

RCD Measurement

Insulation Measurement

Loop Resistance Measurement

Voltage Measurement

Applicable Regulations and Standards

IEC 60364-6	Operation of electrical installations
EN 50110-1	
- Part 100: General requirements	

Characteristic Values

Nominal Ranges of Use
Voltage U_{N}

Frequency f_{N}

Overall voltage range
Overall frequency range
Waveform
Temperature range Battery voltage
Line impedance angle
Probe resistance

120 V	$(108 \ldots 132 \mathrm{~V})$
230 V	$(196 \ldots 253 \mathrm{~V})$
400 V	$(340 \ldots 440 \mathrm{~V})$
$16^{2} / 3 \mathrm{~Hz}$	$(15.4 \ldots 18 \mathrm{~Hz})$
50 Hz	$(49.5 \ldots 50.5 \mathrm{~Hz})$
60 Hz	$(59.4 \ldots 60.6 \mathrm{~Hz})$
200 Hz	$(190 \ldots 210 \mathrm{~Hz})$
400 Hz	$(380 \ldots 420 \mathrm{~Hz})$
$65 \ldots 550 \mathrm{~V}$	
$15.4 \ldots 420 \mathrm{~Hz}$	
sine	
$0^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}$	
$8 \ldots 12 \mathrm{~V}$	
Corresponds to $\cos \varphi=1 \ldots 0.95$	
$<50 \mathrm{k} \Omega$	

PROFITEST MTECH+, MPro, Mxtra, SECULIFE Ip
 DIN VDE 0100/IEC 60364-6 Testers

Characteristic Values PROFITEST MTECH+

PROFITEST MTECH+, Mpro, Mxtra, SECULIFE IIp DIN VDE 0100/IEC 60364-6 Testers

Characteristic Values PROFITEST MTECH+

${ }_{2} \mathrm{U}>253 \mathrm{~V}$, with 2 or 3-pole adapter only
$21 \cdot / 2 \cdot 1 \Delta \mathrm{~N}>300 \mathrm{~mA}$ and $5 \cdot \mid \Delta \mathrm{N}>500 \mathrm{~mA}$ and $\mathrm{If}>300 \mathrm{~mA}$ only up to $\mathrm{U}_{\mathrm{N}} \leq 230 \mathrm{~V}$! $1 \Delta \mathrm{~N} 5 \cdot 300 \mathrm{~mA}$ only with $U_{\mathrm{N}}=230 \mathrm{~V}$
3 The transformation ratio selected at the clamp (1 ... $1000 \mathrm{mV} / \mathrm{A}$) must be set in the "Type" menu with the rotary switch in the "SENSOR" position.
4 at $R_{\text {Eselektiv }} / R_{\text {Egesamt }}<100$
5 the indicated measuring and intrinsic uncertainties already include the uncertainties of the respective current clamp.
6 Measuring range of the signal input at the test instrument $\mathrm{U}_{\mathrm{E}}: 0 \ldots 1.0 \mathrm{~V}_{\text {eff }}(0 \ldots 1.4$
Vpeak) AC/DC
${ }_{8}$ Input impedance of signal input at the test instrument: $800 \mathrm{k} \Omega$
8 up to firmware version 3.4.4: for $f_{N}<45 \mathrm{~Hz}=>\cup_{N}<253 \mathrm{~V}$ as from firmware virmware 3.6.0: for $\mathrm{f}_{\mathrm{N}}<45 \mathrm{~Hz}=>\mathrm{U}_{\mathrm{N}}<500 \mathrm{~V}$

Key: $\mathrm{D}=$ digits, rdg. = measured value (reading)

PROFITEST MTECH+, MPro, Mxtra, SECULIFE Ip
 DIN VDE 0100/IEC 60364-6 Testers

Characteristic Values PROFITEST MPRO, MXTRA \& SECULIFE IP

PROFITEST Mtech+, Mpro, Mxtra, SECULIFE Ilp DIN VDE 0100/IEC 60364-6 Testers

$\begin{gathered} \text { Func- } \\ \text { tion } \end{gathered}$	Measured Quantity	Display Range	ResoIution	Test Current	Measuring Range	Nominal Values	Measuring Uncertainty	Intrinsic Uncertainty	Connection						
									$\begin{array}{\|c\|} \text { Inserf }_{1} \end{array}$	2-Pole Adapter	3-Pole Adapter		$\begin{array}{r} \mathrm{Cla} \\ \mathrm{Z} 3512 \mathrm{~A} \end{array}$		CP1100
$\mathrm{R}_{\text {ISO }}$	$\mathrm{R}_{\text {ISO }}, \mathrm{R}_{\text {EISO}}$	$\begin{gathered} 1 \ldots 999 \mathrm{k} \Omega \\ 1.00 \ldots 9.99 \mathrm{M} \Omega \\ 10.0 \ldots 49.9 \mathrm{M} \Omega \end{gathered}$	$\begin{array}{\|c\|} \hline 1 \mathrm{k} \Omega \\ 10 \mathrm{k} \Omega \\ 100 \mathrm{k} \Omega \end{array}$	$\mathrm{I}_{\mathrm{k}}=1.5 \mathrm{~mA}$	$\begin{gathered} 50 \ldots 999 \mathrm{k} \Omega \\ 1.00 \ldots 49.9 \mathrm{M} \Omega \end{gathered}$	$\begin{aligned} & U_{N}=50 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{N}}=1 \mathrm{~mA} \end{aligned}$	$k \Omega$ range $\pm(5 \% \text { rdg. }+10 \mathrm{D})$ $M \Omega$ range $\pm(5 \% \text { rdg. }+1 \text { d) }$	$k \Omega$ range $\pm(3 \% \text { rdg. }+10 \mathrm{~d})$ $M \Omega$ range $\pm(3 \%$ rdg. +1 d $)$	-	\bullet					
		$\begin{gathered} 1 \ldots 999 \mathrm{k} \Omega \\ 1.00 \ldots 9.99 \mathrm{M} \Omega \\ 10.0 \ldots 99.9 \mathrm{M} \Omega \end{gathered}$	$\begin{gathered} 1 \mathrm{k} \Omega \\ 10 \mathrm{k} \Omega \\ 100 \mathrm{k} \Omega \end{gathered}$		$\begin{gathered} 50 \ldots 999 \mathrm{k} \Omega \\ 1.00 \ldots 99.9 \mathrm{M} \Omega \end{gathered}$	$\begin{aligned} & U_{N}=100 \mathrm{~V} \\ & I_{N}=1 \mathrm{~mA} \end{aligned}$									
		$1 \ldots 999 \mathrm{k} \Omega$ $1.00 . . .9 .99 \mathrm{M} \Omega$ $10.0 . .99 .9 \mathrm{M} \Omega$ $100 \ldots 200 \mathrm{M} \Omega$	$\begin{array}{\|c} \hline 1 \mathrm{k} \Omega \\ 10 \mathrm{k} \Omega \\ 100 \mathrm{k} \Omega \\ 1 \mathrm{M} \Omega \end{array}$		$\begin{gathered} 50 \ldots 999 \mathrm{k} \Omega \\ 1.00 \ldots 200 \mathrm{M} \Omega \end{gathered}$	$\begin{aligned} & U_{N}=250 \mathrm{~V} \\ & I_{N}=1 \mathrm{~mA} \end{aligned}$									
		$1 \ldots 999 \mathrm{k} \Omega$ $1.00 \ldots 9.99 \mathrm{M} \Omega$ $10.0 \ldots 99.9 \mathrm{M} \Omega$ $100 \ldots 500 \mathrm{M} \Omega$	$\begin{gathered} 1 \mathrm{k} \Omega \\ 10 \mathrm{k} \Omega \\ 100 \mathrm{k} \Omega \\ 1 \mathrm{M} \Omega \\ \hline \end{gathered}$		$\begin{gathered} 50 \ldots 999 \mathrm{k} \Omega \\ 1.00 \ldots 499 \mathrm{M} \Omega \end{gathered}$	$\begin{aligned} U_{N} & =325 \mathrm{~V} \\ U_{N} & =500 \mathrm{~V} \\ U_{N} & =1000 \mathrm{~V} \\ I_{N} & =1 \mathrm{~mA} \end{aligned}$									
	U	$\begin{gathered} 10 \ldots 999 \mathrm{~V}- \\ 1.00 \ldots 1.19 \mathrm{kV} \\ \hline \end{gathered}$	$\begin{gathered} 1 \mathrm{~V} \\ 10 \mathrm{~V} \\ \hline \end{gathered}$		10 ... 1.19 kV		$\pm(3 \%$ rdg. + 1 d)	$\pm(1.5 \%$ rdg. $+1 \mathrm{~d})$							
$\mathrm{R}_{\mathrm{L} 0}$	$\mathrm{R}_{\mathrm{L} 0}$	$\begin{gathered} \hline 0.00 \Omega \ldots 9 . .99 \Omega \\ 10.0 \Omega \ldots 199.9 \Omega \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 10 \mathrm{~m} \Omega \\ 100 \mathrm{~m} \Omega \\ \hline \end{array}$	$\begin{aligned} & I_{\mathrm{m}} \geq 200 \mathrm{~mA} \\ & I_{\mathrm{m}}<200 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.1 \Omega \ldots 5.99 \Omega \\ & 6.0 \Omega \ldots 100 \Omega \end{aligned}$	$\mathrm{U}_{0}=4.5 \mathrm{~V}$	$\pm(4 \% \mathrm{rdg} .+2 \mathrm{~d})$	$\pm(2 \%$ rdg. $+2 \mathrm{~d})$		\bullet					
				Transformation ratio ${ }^{3}$			5	5							
		0.0 ... 99.9 mA	0.1 mA				$\pm(13 \%$ rdg. +5 d)	$\pm(5 \%$ rdg. $+4 \mathrm{~d})$							
		$100 \ldots 999 \mathrm{~mA}$	1 mA	$1 \mathrm{~V} / \mathrm{A}$	$5 . . .15$ A							115 A			
		1.00 ... 9.99 A	0.01 A	TVA	5... 15		$\pm(13 \% \mathrm{rdg} .+1 \mathrm{~d})$	$\pm(5 \%$ rdg. +1 d)							
		10.0 ... 15.0 A	0.1 A			$\mathrm{f}_{\mathrm{N}}=50 / 60 \mathrm{~Hz}$									
		1.00 ... 9.99 A	0.01 A				$\pm(11 \%$ rdg. +4 d)	$\pm(4 \%$ rdg. +3 d)							
		10.0 ... 99.9 A	0.1 A	$1 \mathrm{mV} / \mathrm{A}$	5... 150 A		$\pm(11 \%$ rdg. +1 d)	$\pm(4 \%$ rdg. +1 d)				Il 150A			
		$100 \ldots 150 \mathrm{~A}$	1 A				$\pm(11 \%$ rag. +1 da)	$\pm(4 \% \mathrm{rdg} .+1 \mathrm{~d})$							
		0.0 ... 99.9 mA	0.1 mA	$1 \mathrm{~V} / \mathrm{A}$	5.1000 mA		\pm (7\% rdg. +2 d)	$\pm(5 \%$ rdg. +2 d)							
		$100 . . .999 \mathrm{~mA}$	1 mA	1V/A	5 ... 1000 mA		$\pm(7 \%$ rdg. +1 d)	$\pm(5 \%$ rdg. $+1 \mathrm{~d})$							
		0.00 ... 9.99 A	0.01 A	$100 \mathrm{mV} / \mathrm{A}$	$0.05 \ldots 10 \mathrm{~A}$		$\pm(3.4 \% \mathrm{rdg} .+2 \mathrm{~d})$	$\pm(3 \% \mathrm{rdg} .+2 \mathrm{~d})$					10 A		
		$0.00 \ldots 9.99 \mathrm{~A}$	0.01 A	$10 \mathrm{mV} / \mathrm{A}$	0.5 ... 100 A	$\begin{gathered} \mathrm{f}_{\mathrm{N}}= \\ 16.7 / 50 / 60 / 200 / \end{gathered}$	$\pm(3.1 \%$ rdg. +2 d)	$\pm(3 \%$ rdg. $+2 \mathrm{~d})$					100 A		
SEN-		10.0 ... 99.9 A	0.1 A	10 mV A	0.5 ... 100 A		$\pm(3.1 \%$ rdg. $+1 \mathrm{~d})$	$\pm(3 \%$ rdg. $+1 \mathrm{~d})$					100 A		
SOR		0.00 ...9.99 A	0.01 A				$\pm(3.1 \% \mathrm{rdg} .+1 \mathrm{~d})$	$\pm(3 \%$ rdg. $+1 \mathrm{~d})$							
6	l/AAmp	10.0 ... 99.9 A	0.1 A	$1 \mathrm{mV} / \mathrm{A}$	$5 . . .1000 \mathrm{~A}$		$\pm(3.1 \%$ rdg. +2 d)	$\pm(3 \% \mathrm{rdg} .+2 \mathrm{~d})$					1000A		
		$100 . . .999 \mathrm{~A}$	1 A				$\pm(3.1 \%$ rdg. +1 d)	$\pm(3 \% \mathrm{rdg} .+1 \mathrm{~d})$							
		0.0 ... 99.9 mA	0.1 mA	$1 \mathrm{~V} / \mathrm{A}$	30.1000 mA		$\pm(27 \%$ rdg. $+100 \mathrm{~d})$	$\pm(3 \% \mathrm{rdg} .+100 \mathrm{~d})$						0.03	
		$100 . . .999 \mathrm{~mA}$	1 mA		$30 . . .1000 \mathrm{~mA}$		\pm (27\% rdg. +11 d)	$\pm(3 \%$ rdg. $+11 \mathrm{~d})$						3	
		$0.00 \quad 9.99 \mathrm{~A}$	0.01 A	$100 \mathrm{mV} / \mathrm{A}$	0.3 10 A	$\mathrm{f}_{\mathrm{N}}=50 / 60 \mathrm{~Hz}$	$\pm(27 \%$ rdg. $+12 \mathrm{~d})$	$\pm(3 \%$ rdg. $+12 \mathrm{~d})$						0.3	
			0.01 A			$\mathrm{f}_{\mathrm{N}}=50 / 60 \mathrm{~Hz}$	$\pm(27 \%$ rdg. $+11 \mathrm{~d})$	$\pm(3 \%$ rdg. $+11 \mathrm{~d})$						30	
		0.00 ...9.99 A	0.01 A		3.100 A		$\pm(27 \%$ rdg. $+100 \mathrm{~d})$	$\pm(3 \% \mathrm{rdg} .+100 \mathrm{~d})$						3	
		10.0 ... 99.9 A	0.1 A		3 ... 100 A		$\pm(27 \%$ rdg. +11 d)	$\pm(3 \%$ rdg. $+11 \mathrm{~d})$						300	
		0.00 ...9.99 A	0.01 A				$\pm(5 \%$ rdg. +12 d)	$\pm(3 \%$ rdg. $+12 \mathrm{~d})$							100A
		10.0 ... 99.9 A	0.1 A	$10 \mathrm{mV} / \mathrm{A}$	0.5 ... 100 A	$\mathrm{f}_{\mathrm{N}}=$	$\pm(5 \%$ rdg.+2 d)	$\pm(3 \%$ rdg. +2 d)							\sim
		$0.00 \ldots 9.99 \mathrm{~A}$	0.01 A			DC/16.7/50/60/	$\pm(5 \%$ rdg. +50 d)	$\pm(3 \% \mathrm{rdg} .+50 \mathrm{~d})$							
		10.0 ... 99.9 A	0.1 A	$1 \mathrm{mV} / \mathrm{A}$	5... 1000 A	200 Hz	$\pm(5 \%$ rdg. +7 d)	$\pm(3 \% \mathrm{rdg} .+7 \mathrm{~d})$							
		$100 . . .999 \mathrm{~A}$	1 A				$\pm(5 \%$ rdg. +2 d)	$\pm(3 \%$ rdg. +2 d)							
U >	V with 2 or	3-pole adapter only				5 the indic	cated measuring	g and intrinsic uncer	certaintic	ies alrea	ady inclu	ude the	e uncer	aintie	
$2 \quad 1.1$	$I \Delta N>300 n$	and $5 \cdot 1 \Delta \mathrm{~N}>500 \mathrm{~m}$	AA and If	$>300 \mathrm{~mA}$ only	up to $U_{N} \leq 230 \mathrm{~V}$	6 of the re	espective curren	nt clamp.							
	ansformation " menu with $R_{\text {Eselective }}$	atio selected at the rotary switch in th otal < 100	clamp (1 e "SENS	$1000 \mathrm{mV} / \mathrm{A}$) OR" position.	must be set in th	6 Measurin 7 Input imp 8 up to fir as from	ing range of the sign mpedance of sign irmware version firmware versio	nal input at the test nal input at the 3.4.4: \quad for f_{N} 3.6.0: \quad for f_{N}	instrume est ins <45 <45	nt $U_{E}: 0$. rument: $\mathrm{Hz} \Rightarrow U_{N}$ $\mathrm{Hz} \Rightarrow U_{N}$		$\begin{aligned} & \text { eff } 0 \ldots 1 . .1 . \\ & \Omega= \\ & 3 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$1.4 \mathrm{Vpe}$		

PROFITEST MTECH+, Mpro, Mxtra, SECULIFE IIP
 DIN VDE 0100/IEC 60364-6 Testers

Special Function PROFITEST MPRO, MXTRA

				Test Current/					Conne	tions	
$\begin{gathered} \text { Func- } \\ \text { tion } \end{gathered}$	Measured Quantity	Display Range	Resolution	Signal Frequency ${ }^{5}$	Measuring Range	Measuring Uncertainty	Intrinsic Uncertainty	Adapter for PRO-RE	Test Plug PRO-RE/2	$\begin{aligned} & \text { Current } \\ & \text { Z3512A } \end{aligned}$	Clamps Z591B
RE ${ }_{\text {BAT }}$	RE, 3-pole	$\begin{gathered} 0.00 \ldots 9.99 \Omega \\ 10.0 \ldots 9.9 \Omega \\ 100 \ldots 999 \Omega \\ 1.00 \ldots 9.99 \mathrm{k} \Omega \\ 10.0 \ldots 50.0 \mathrm{k} \Omega \end{gathered}$	$\begin{array}{\|c\|} \hline 0.01 \Omega \\ 0.1 \Omega \\ 1 \Omega \\ 0.01 \mathrm{k} \Omega \\ 0.1 \mathrm{k} \Omega \\ \hline \end{array}$	$16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $1.6 \mathrm{~mA} / 128 \mathrm{~Hz}$ $0.16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $0.16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $0.16 \mathrm{~mA} / 128 \mathrm{~Hz}$	$\begin{gathered} 1.00 \Omega \ldots 19 . . .9 \Omega \\ 5.0 \Omega \Omega 199 \Omega \\ 50 \Omega \ldots 1.99 \mathrm{k} \Omega \\ 0.50 \mathrm{k} \Omega \ldots \\ 0.50 \mathrm{k} \Omega \\ \hline . . \\ \hline 19.9 \mathrm{k} \Omega \\ \hline \end{gathered}$	$\begin{gathered} \pm(10 \% \text { rdg. }+10 \mathrm{D}) \\ +1 \Omega \end{gathered}$	$\begin{gathered} \pm(3 \% \text { rdg. }+5 \mathrm{D}) \\ +0,5 \Omega \end{gathered}$	6			
	RE, 4-pole					$\pm(10 \% \mathrm{rdg} .+10 \mathrm{~d})$	$\pm(3 \%$ rdg. +5 d)				
	$\begin{gathered} \text { RE, 4-pole } \\ \text { Selective } \\ \text { With clamp meter } \end{gathered}$	$\begin{gathered} 0.00 \ldots 9.99 \Omega \\ 10.0 . \ldots 99.9 \Omega \\ 100 \ldots 999 \Omega \\ 1.00 \ldots .999 \\ 10.0 \ldots 19.9 \mathrm{k} \Omega \\ 10.0 \ldots 49 \\ 15 \end{gathered}$	$\begin{gathered} \hline 0.01 \Omega \\ 0.1 \Omega \\ 1 \Omega \\ 0.01 \mathrm{k} \Omega \\ 0.1 \mathrm{k} \Omega \\ 0.1 \mathrm{k} \Omega \end{gathered}$	$16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $1.6 \mathrm{~mA} / 128 \mathrm{~Hz}$ $0.16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $0.16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $0.16 \mathrm{~mA} / 128 \mathrm{~Hz}$	$\begin{aligned} & 1.00 \Omega \ldots 9.99 \Omega \\ & 10.0 \Omega \ldots 200 \Omega \end{aligned}$	$\begin{aligned} & \pm(15 \% \text { rdg. }+10 \mathrm{~d}) \text {) } \\ & \pm(20 \% \text { rdg. } 10 \text { 10d) } \end{aligned}$	$\begin{aligned} & \pm(10 \% \text { rdg.+10d) } \\ & \pm(15 \% \text { rdg.+10d) } \end{aligned}$	6		9	
	Soil resistivity (p)	$\begin{gathered} 0.0 \ldots 9.9 \Omega \mathrm{~m} \\ 100 \ldots 999 \Omega \mathrm{~m} \\ 1.00 \ldots 9.99 \mathrm{~km} \end{gathered}$	$\begin{gathered} 0.1 \Omega \mathrm{~m} \\ 1 \Omega \mathrm{~m} \\ 0.01 \mathrm{k} \Omega \mathrm{~m} \end{gathered}$	$16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $1.6 \mathrm{~mA} / 128 \mathrm{~Hz}$ $0.16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $0.16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $0.16 \mathrm{~mA} / 128 \mathrm{~Hz}$	$100 \Omega \mathrm{~m} \ldots . .9 .99 \mathrm{k} \Omega \mathrm{m}^{12}$ $500 \Omega \mathrm{~m} \ldots 9.99 \mathrm{k} \Omega \mathrm{m}^{12}$ $5.00 \mathrm{k} \Omega \mathrm{m} . .9 .99 \mathrm{k} \Omega \mathrm{m}^{13}$ $5.00 \mathrm{k} \Omega \mathrm{m} . . .9 .99 \mathrm{k} \Omega \mathrm{m}^{13}$ $5.00 \mathrm{k} \Omega \mathrm{m} . . .9 .99 \mathrm{k} \Omega \mathrm{m}^{13}$	$\pm(20 \% \text { rdg. } 11 \text { +10d) }$	$\pm(12 \% \text { rdg. } \mathrm{r1},+10 \mathrm{~d})$	6			
	Probe distance d (p)	0.1 ... 999 m									
	RE, 2 clamps	$0.00 \ldots 9.99 \Omega$ $10.0 . \ldots 99.9 \Omega$ $100 . . .999 \Omega$ $1.00 \ldots 1.99 \mathrm{k} \Omega$	$\begin{array}{\|c\|} \hline 0.01 \Omega \\ 0.1 \Omega \\ 1 \Omega \\ 0.01 \mathrm{k} \Omega \end{array}$	$30 \mathrm{~V} / 128 \mathrm{~Hz}$	$\begin{aligned} & 0.10 \ldots 9 . .99 \Omega \\ & 10.0 \ldots 99.9 \Omega \end{aligned}$	$\begin{aligned} & \pm(10 \% \text { rdg. }+5 \mathrm{~d}) \\ & \pm(20 \% \text { rdg. }+5 \mathrm{~d}) \end{aligned}$	$\begin{aligned} & \pm(5 \% \text { rdg. }+5 \mathrm{~d}) \\ & \pm(12 \% \text { rdg. }+5 \mathrm{~d}) \end{aligned}$		7	9	8

5 Signal frequency without interference signal
6 PRO-RE (Z501S) adapter cable for test plug, for connecting earth probes (E-Set 3/4)
7 PRO-RE/2 (Z502T) adapter cable for test plug, for connecting the generator clamp (E-CLIP2)
8 Generator clamp: E-CLIP2 (Z591B) ${ }^{9}$ Clamp meter: Z3512A (Z225A)
${ }^{10}$ Where RE.sel/RE <10 or clamp current $>500 \mu \mathrm{~A}$
${ }^{11}$ Where RE.H/RE ≤ 100 and RE.E/RE ≤ 100
${ }^{12}$ Where $d=20 \mathrm{~m} \quad{ }^{13}$ Where $d=2 \mathrm{~m}$
${ }^{14}$ Where $Z_{L-P E}<0,6 \Omega, I_{k}>U_{N} / 0,5 \Omega$ is indicated
${ }^{15}$ Only where RANGE $=20 \mathrm{k} \Omega$
16 Only where RANGE $=50 \mathrm{k} \Omega$ or AUTO

PROFITEST Mtech+, Mpro, Mxtra, SECULIFE Ilp DIN VDE 0100/IEC 60364-6 Testers

PROFITEST MASTER Characteristic Values

Reference Conditions			
Line voltage	$230 \mathrm{~V} \pm 0.1 \%$		
Line frequency	$50 \mathrm{~Hz} \pm 0.1 \%$		
Meas. quantity frequency	$45 \mathrm{~Hz} \ldots 65 \mathrm{~Hz}$		
Measured qty. waveform	Sine (deviation between effective and rectified value $\leq 0.1 \%$)		
Line impedance angle $\cos \varphi=1$ Probe resistance $\leq 10 \Omega$ Supply power $12 \mathrm{~V} \pm 0.5 \mathrm{~V}$ Ambient temperature $+23^{\circ} \mathrm{C} \pm 2 \mathrm{~K}$ Relative humidity 40% to 60%			
Finger contact For testing potential difference to ground potential			
Standing surface Purely ohmic		$.$	insulation
:---			

Power Supply

Rechargeable batteries 8 each AA 1.5 V ,
we recommend only using the battery pack included in the standard equipment (pack of rechargeable batteries article no. Z 502 H)
Number of measurements (standard setup with illumination)

- For R ISO $\quad 1$ measurement - 25 s pause:

- For R RO	Automatic polarity reversal / 1Ω (1 measuring cycle) -25 s pause: Approx. 1000 measurements
Battery test	Symbolic display of battery voltage

Battery saver circuit

Safety shutdown If supply voltage is too low, the instrument is switched off, or cannot be switched on.
Recharging socket Installed rechargeable batteries can be recharged directly by connecting a charger to the recharging socket: charger Z502R
Charging time
Charger Z502R:
Approx. 2 hours *

* Maximum charging time with fully depleted rechargeable batteries.

A timer in the charger limits charging time to no more than 4 hours.

Overload Capacity

$\mathrm{R}_{\text {ISO }}$
$U_{L-P E}, U_{L-N}$
RCD, R_{E}, R_{F}
$Z_{\text {L-PE }}, Z_{\text {L-N }}$
$R_{\text {LO }}$
Fine-wire
fuse protection

Electronic protection prevents switching on if interference voltage is present

FF 3.15 A 10 s, fuses blow at $>5 \mathrm{~A}$

Electrical Safety

Protection class II
Nominal voltage $\quad 230 / 400 \mathrm{~V}(300 / 500 \mathrm{~V})$
Test voltage $\quad 3.7 \mathrm{kV} \mathrm{50} \mathrm{Hz}$
Measuring category CAT III 500 V or CAT IV 300 V
Pollution degree 2
Fusing, L and N terminals 1 cartridge fuse-link ea.
FF 3.15/500G $6.3 \times 32 \mathrm{~mm}$

Electromagnetic Compatibility (EMC)

Product standard	EN 61326-1	
Interference emission		Class
EN 55022		A
Interference immunity	Test Value	Feature
EN 61000-4-2	Contact/atmos. $-4 \mathrm{kV} / 8 \mathrm{kV}$	
EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$	
EN 61000-4-4	Mains connection - 2 kV	
EN 61000-4-5	Mains connection - 1 kV	
EN 61000-4-6	Mains connection - 3 V	
EN 61000-4-11	0.5 period / 100\%	

Ambient Conditions

Accuracy	0 to $+40^{\circ} \mathrm{C}$
Operation	-5 to $+50^{\circ} \mathrm{C}$
Storage	-20 to $+60^{\circ} \mathrm{C}$ (without rechargeable
	batteries)
Relative humidity	Max. 75%, no condensation allowed
Elevation	Max. 2000 m

Mechanical Design

Display
Dimensions
Weight
Protection
Multiple display with dot matrix, 128×128 pixels
$\mathrm{W} \times \mathrm{L} \times \mathrm{D}: 260 \times 330 \times 90 \mathrm{~mm}$ approx. 2.7 kg with rechargeable batteries Housing: IP40, test probe: IP40 per EN 60529/DIN VDE 0470, part 1

Data Interfaces

Type	USB slave for PC connection
Type	RS 232 for barcode and RFID scanners
Type	Bluetooth ${ }^{\circledR}$ for connection to PC (PROFITEST MTECH+/MXTRA/SECULIFE IP only)

PROFITEST MTECH+, Mpro, Mxtra, SECULIFE Ip DIN VDE 0100/IEC 60364-6 Testers

Scope of delivery:

1 Test instrument
1 Earthing contact plug insert (country-specific)
1 2-pole measuring adapter and 1 cable for expansion into a 3-pole adapter (PRO-A3-II)
2 Alligator clips
1 Shoulder strap
1 Set of rechargeable batteries (Z 502 H)
1 Battery charger Z502R
1 USB cable
1 DAkkS calibration certificate
1 Supplement Safety Information
1 Condensed operating instructions*

* Detailed operating instructions for download from our website at www.gossenmetrawatt.com

1 Card with registration key for software

Special Functions
 with PROFITEST MPRO and PROFITEST MXTRA

(Rechargeable) Battery Powered Earthing Resistance Measurements

Earthing Resistance R_{E}

3 -wire measuring method, probes and earth electrodes connected via PRO-RE adapter

4-wire measuring method, probes and earth electrodes connected via PRO-RE adapter

Selective Earthing Resistance R_{E}

(4-wire measuring method) Current clamp sensor connected directly, probes and earth electrodes connected via PRO-RE adapter

Earth Loop Resistance $\mathrm{R}_{\text {Eloop }}$ 2-clamp measurement: Current clamp sensor connected directly, current clamp transformer connected via PRO-RE/2 adapter

Soil Resistivity Rho

Probes connected via PRO-RE adapter

Special Functions

with PROFITEST MTECH+/MXTRA and SECULIFE IP
Tripping Test for Type B, AC/DC Sensitive RCDs ${ }^{\sim}{ }^{-\pi}$ with Rising DC Residual Current and Measurement of Tripping Current

With the selector switch in the IF_position, slowly rising current flows via N and PE. The momentary measured current value is continuously displayed. When the RCCB is tripped, the last measured current value is displayed. A greatly reduced rate of increase is used for delayed RCCBs (type [S).

Tripping Test for Type B, AC/DC Sensitive RCDs \sim 用 with Constant DC Residual Current and Measurement of Tripping Time
With the selector switch set to the respective nominal residual current, twice the selected nominal current flows via N and PE . Time to trip is measured for the RCCB and displayed.

Loop Resistance Measurement with Suppression of RCD Tripping

The test instruments make it possible to measure loop impedance in TN systems with type A, F mand type AC \sim RCCBs (10, 30, 100, 300, 500 mA nominal residual current).
The respective test instrument generates a DC residual current to this end, which saturates the RCCB's magnetic circuit. The test instrument then superimposes a measuring current which only demonstrates half-waves of like polarity. The
 RCCB is no longer capable of detecting this measuring current, and is consequently not tripped during measurement.

Selective Earthing Resistance Measurement (mains powered)

PROFITEST MTECH+, Mpro, Mxtra, SECULIFE IP DIN VDE 0100/IEC 60364-6 Testers

Special Functions

Voltage Drop Measurement (at $\left.Z_{L N}\right)-\Delta U$ Function

According to DIN VDE 100, part 600 , voltage drop from the intersection of the distribution network and the consumer system to the point of connection of an electrical power consumer (electrical outlet or device connector terminals) should not exceed 4\% of nominal line voltage.
Voltage drop calculation:
$\Delta \mathrm{U}=\mathrm{Z}_{\mathrm{L}-\mathrm{N}} \bullet$ rated fuse current $\Delta \mathrm{U}$ as $\%=\Delta \mathrm{U} / \mathrm{U}_{\mathrm{L}-\mathrm{N}}$

Measurement of the Impedance of Insulating Floors and Walls (standing surface insulation impedance) $-Z_{S T}$ Function

The instrument measures the impedance between a weighted metal plate and earth. Line voltage available at the measuring site is used as an alternating voltage source. The $Z_{S T}$ equivalent circuit is considered a parallel circuit.

Special Functions PROFITEST MXTRA

Leakage Current Measurement with PRO-AB Adapter (PROFITEST MXTRA only)

Measurement of continuous leakage and patient auxiliary current per IEC 62353 (VDE 0750, part 1) / IEC 601-1 / EN 60 601-1:2006 (Medical electrical equipment General requirements for basic safety) is possible with the help of the PRO-AB leakage current measuring adapter used as an accessory with the PROFITEST MXTRA test instrument.
As specified in the standards
 listed above, current values of up to 10 mA may be measured with this measuring adapter.
In order to be able to fully cover this measuring range using the measurement input provided on the test instrument (2 -pole current clamp input), the measuring instrument is equipped with range switching between transformation ratios of $10: 1$ and 1:1.

Testing of Insulation Monitoring Devices (IMDs)
 (PROFITEST MXTRA and SECULIFE IP only)

Insulation monitors are used in power supplies for which a sin-gle-pole earth fault may not result in failure of the power supply, for example in operating rooms or photovoltaic systems.
Insulation monitors can be tested with the help of this special function. After pressing the start button, an adjustable insulation resistance is activated between one of the two phases of the IT system

AFFligation of an adjustable ceristance betwenn external conductor and earth in the IT muins

Etortstop: Fiess ETRFT to be monitored and ground to this end. This resistance can be changed in the manual sequence mode with the help of the softkeys, and it can be varied automatically from $R_{\max }$ to $R_{\text {min }}$ in the automatic operating mode.
Time, during which the momentary resistance value prevails at the system until the next change in value, is displayed. The IMD's display and response characteristics can be subsequently evaluated and documented with the help of the softkeys.

PROFITEST Mtech+, Mpro, Mxtra, SECULIFE Ilp DIN VDE 0100/IEC 60364-6 Testers

Special Functions PROFITEST MXTRA

Determining Residual Voltage / Detecting Mains Fluctuations

 (PROFITEST MXTRA only)The EN 60204 standard specifies that after switching supply power off, residual voltage between L and PE must drop to a value of 60 V or less within 5 seconds at all accessible, active components of a machine to which a voltage of greater that 60 V is applied during operation.
With the PROFITEST MXTRA, testing for the absence of voltage is performed as follows by means of a voltage measurement which involves measuring discharge time tu: In the case of voltage dips of greater than 5\% of momentary line voltage (within 0.7 seconds), the stopwatch is started and momentary undervoltage is displayed as Ures after 5 seconds and indicated by the red UL/RL diode.

Intelligent Ramp (PROFITEST MXTRA only)

The advantage of this measuring function in contrast to individual measurement of $I_{\Delta N}$ and t_{A} is the simultaneous measurement of breaking time and breaking current by means of a test current which is increased in steps, during which the RCD is tripped only once.
The intelligent ramp is subdivided into time segments of 300 ms each between the initial current value $\left(35 \% I_{\Delta N}\right)$ and the final current value $\left(130 \% I_{\Delta N}\right)$. This results in a gradation for which each step corresponds to a constant test current which is applied for no longer than 300 ms , assuming that tripping does not occur.
And thus both tripping current and tripping time are measured and displayed.

I $\triangle \mathrm{N}:$
$16,30,160,360,5608$ 自: [mic]

Special Functions PROFITEST MXTRA

Testing Residual Current Monitoring Devices (RCMs) (PROFITEST MXTRA only)

RCMs (residual current monitors) monitor residual current in electrical systems and display it continuously. As is also the case with residual current devices, external switching devices can be controlled in order to shut down sup ply power in the event that a specified residual current value is exceeded. However, the advantage of an RCM is that the user is informed of fault current within the system before shutdown takes place.
As opposed to individual measurement of $\mathrm{I}_{\Delta N}$ and t_{A}, measurement results must be evaluated manually in this case.
If an RCM is used in combination with an external switching device, the combination must be tested as if it were an RCD.

Testing the Operating States of Electric Vehicles at Charging Stations per IEC 61851 (PROFITEST MTECH+ \& PROFITEST MXTRA only)
A charging station is an equipment designed for the charging of electric vehicles per
IEC 61851 which essentially consists of a plug connector, a cable protection, a residual current device (RCD), as well as a circuit breaker and a security communication system (PWM).
Depending on the place of installation and application, further functional features such as mains connection and meter may be included.

Simulation of operating states per IEC 61851with the MENNEKES test box (State A - E)
The MENNEKES test box only serves the purpose of simulating different operating states of an electric vehicle fictitiously connected with a charging station.

PROFITEST Mtech+, Mpro, Mxtra, SECULIFE Ilp DIN VDE 0100/IEC 60364-6 Testers

Special Functions PROFITEST MXTRA

Test Sequences for Report Generation of Fault Simulations on PRCDs type S and K with PROFITEST PRCD (PROFITEST MXTRA only):

- Three test sequences are preconfigured:
- PRCD-S (single phase/3-pole)
- PRCD-K (single phase/3-pole)
- PRCD-S (three-phase/5-pole)
- The test instrument guides you through all test steps in a semi-automatic fashion:
Single phase PRCDs:
PRCD-S: 11 test steps
PRCD-K: 4 test steps
3-phase PRCDs: PRCD-S: 18 test steps
- Each test step is assessed and evaluated by the user (OK/not OK) for subsequent report generation purposes.
- Measurement of protective conductor resistance of the PRCD by means of function $R_{L O}$ at the test instrument.
- Measurement of insulation resistance of the PRCD by means of function $\mathrm{R}_{\text {ISO }}$ at the test instrument.
- Trip test with nominal fault current by means of function I_{F} at the test instrument.
- Measurement of tripping time by means of function $I_{\Delta N}$ at the test instrument.
- Varistor test with PRCD-K: measurement via ISO ramp.

Further information is included in the data sheet for the PROFITEST PRCD.

Selecting the PRCD under Test

Example Simulation Interruption

Special Functions (all Types)

Automatic Test Sequence Function

If the same order of tests with subsequent report generation is to be performed repeatedly, as is, for example, specified by certain standards, we recommend using test sequences.
With the help of test sequences it is possible to compile automatic test procedures on the basis of the manual individual measurements. A test sequence consists of up to 200 individual test steps
 which have to be processed one after the other.
The test sequences are created at a PC by means of the ETC software and are then transferred to the PROFITEST MPRO or PROFITEST MXTRA test instruments.
The measurement parameters are also configured at a PC. However, they can still be modified at the test instrument during the test procedure before the respective measurement is launched.

Bluetooth $^{\circledR}$) Interface (PROFITEST MTECH+/MXTRA/SECULIFE IP only) If your PC is equipped with a Bluetooth ${ }^{\circledR}$ interface, wireless communication is possible between the test instrument and ETC user software for the transfer of data and test structures.
Furthermore, it is possible to connect a Bluetooth keyboard (Logitech).

IZYTRONIQ

The PC application software

IZYTRON

 IZYTRONIQ is a database software for the complete management and documentation of testing.IZYTRONIQ allows for the management and documentation of measured values for the following test instruments of the PROFITEST MASTER series:
PROFITEST MPRO, PROFITEST MTECH+PROFITEST MTECH+, PROFITEST
MXTRA, SECULIFE IP as from firmware version 3.1.0 in each case.

For further information on the application software please refer to the internet at www.izytron.com

PROFITEST Mtech+, Mpro, Mxtra, SECULIFE Ip DIN VDE 0100/IEC 60364-6 Testers

Report Generation Accessories

See also separate ID systems data sheet.
Barcode scanner for connection to RS 232 port at tester - Z502F

Barcode and label printer for USB connection to a PC - Z721E
Barcode/label printer for connection to a PC, for self-adhesive, smudge-proof barcode labels, for identifying devices and system components. Devices and system components can be logged by our test instruments, and acquired measured values can be allocated to them with the scanner.

SCANBASE RFID reader for connection to RS 232 port at tester - Z751G

The Z751G RFID reader is preprogrammed to scan the following RFD tags.

Order No.	Frequency	Standard	Type	Quantity per Package
Z751R	13.56 MHz	ISO 15693	approx. 22 mm dia., self-adhesive	500 pieces
Z751S	13.56 MHz	ISO 15693	approx. $30 \times 2 \mathrm{~mm}$ dia. with 3 mm hole	500 pieces
Z751T	13.56 MHz	ISO 15693	Pigeon ring, approx. 10 mm dia.	250 pieces

Power Supply Accessories

Z502H Master Battery Pack
ChargerZ502R

with angle plug/ jack plug

Accessory Plug Inserts and Adapters

Holder for test probes and measuring adapter PRO-HB (Z501V)

Country specific Plug Inserts PRO-Schuko

PRO-W

Country specific Plug Insert
Test Probes (L68 mm, \varnothing 2,3 mm) PRO-GB-USA (Z503B)

Set-Probes (Z503F)

Flat test clip for contacting on busbars PRO-PE Clip (Z503G)

PROFITEST MTECH+, Mpro, Mxtra, SECULIFE Ilp DIN VDE 0100/IEC 60364-6 Testers

Magnetic measuring contacts (patent) with magnetic strain relief (Z502Z)

Safety Clip (Z503W)

3-Phase Current Adapters 5-pole

A3-16, A3-32 and A3-63 3-phase adapters are used for trouble-free connection of test instruments to 5 pole CEE outlets. The three variants differ with regard to plug size, which corresponds respectively to 5-pole CEE outlets with current ratings of 16,32 and 63 A. Phase sequence is indicated with lamps at all three variants. Testing the effectiveness of safety measures is conducted via five 4 mm contact protected sockets.

3-Phase Current Adapter 7-pole

A3-16 Shielded and A3-32 Shielded 3-phase adapters are used for trouble-free connection of test instruments to 7 -pole CEE outlets. The two variants differ with regard to plug size, which corresponds respectively to 7 -pole CEE outlets with current ratings of 16 and 32 A. Testing the effectiveness of safety measures is conducted via seven 4 mm sockets with touch protection.

Variable Plug Adapter Set

Three self-retaining, contact protected test probes for the connection of measurement cables with 4 mm banana plugs, or with contact protected plugs for sockets with an opening of 3.5 mm to 12 mm , e.g. CEE, Perilex sockets etc. For example, the test probes also fit the square PE jacks on Perilex sockets. Maximum allowable operating voltage: 600 V per IEC 61010.

3-phase test adapter PROFITEST REMOTE (M514R) for PROFITEST MTECH+ IQ and MXTRA IQ

For the measurement of loop and line impedance as well as insulation resistance without any bothersome replugging or exchanging of cables, etc..

PRO-AB Leakage Current Measuring Adapter for PROFITEST MXTRA and SECULIFE IP

Input current:
0 to 10 mA
Input impedance:
$1 \mathrm{k} \Omega \pm 0.5 \%$
Output voltage:
10:1 $\quad 0$ to $1 \mathrm{~V}(0.1 \mathrm{~V} / \mathrm{mA})$
1:1 $\quad 0$ to $10 \mathrm{~V}(1 \mathrm{~V} / \mathrm{mA})$
Output impedance: $10 \mathrm{k} \Omega$

PROFITEST Mtech+, Mpro, Mxtra, SECULIFE Ilp DIN VDE 0100/IEC 60364-6 Testers

ISO Calibrator 1 (M662A)

KS24 Cable Set

Calibration adapter for rapid, efficient testing of the accuracy of measuring instruments for insulation resistance and low-value resistors

The KS24 cable set includes a 4 m long extension cable with a permanently attached test probe at one end and a contact protected socket at the other end, as well as an alligator clip which can be plugged onto the test probe.

TELEARM 120 Telescoping Rod

Floor Probe

The 1081 floor probe makes it possible to measure the resistance of insulating floors in accordance with DIN VDE 0100, part 600, and EN 1081.

WZ12C (Z219C)

Current clamp sensor for leakage current, selectable measuring ranges: 1 mA to 15 A , 3% and 1 A to 150 A, 2\% Transformation ratios: $1 \mathrm{mV} / \mathrm{mA}, 1 \mathrm{mV} / \mathrm{A}$

METRAFLEX P300 (Z502E)

Flexible current clamp sensor for selective earthing resistance measurement
$3 / 30 / 300 \mathrm{~A}, 1 \mathrm{~V} /$
$100 \mathrm{mV} / 10 \mathrm{mV} / \mathrm{A}$

Earthing Resistance Measurement Accessories

PRO-RE/2 Clamp Adapter (Z502T)

Adapter which is mounted to the test plug allowing for connection of the E-Clip 2 generator clamp for 2clamp or ground-loop earthing resistance measurement.
2-clamp or ground loop measurement is thus made possible.

PRO-RE Adapter (Z501S)

Earth electrodes, auxiliary earth electrodes, probe and auxiliary probe are connected to the tester via the banana plug sockets, and thus via the adapter which is mounted to the test plug.

E-Clip 2 Clamp Generator (Z591B)

Measuring range: 0.2 A to 1200 A Measuring category: 600 V CAT III
Max. cable dia.: 52 mm Transformation ratio: 1000 A/1A
Frequency range: 40 Hz to 5 kHz
Output signal: 0.2 mA to 1.2 A
Equipped with laboratory safety plug inputs
AC Current Sensor Clamp (Z3512A)

Switchable measuring ranges: 1 mA to 1/100/ 1000 A~
Transformation ratios:
$1 \mathrm{~V} / \mathrm{A}, 100 \mathrm{mV} /$ $\mathrm{A}, 10 \mathrm{mV} / \mathrm{A}$, $1 \mathrm{mV} / \mathrm{A}$

PROFITEST Mtech+, Mpro, Mxtra, SECULIFE Ilp DIN VDE 0100/IEC 60364-6 Testers

TR25II Cable reel (Z503X)

25 m measurement cable coiled onto a plastic drum. Connection to the inside end of the cable is made possible with two sockets integrated into the drum. The other end is equipped with a banana plug.
Cable resistance can be compensated for with the rotary selector switch in the R_{LO} position.

TR50II Cable reel (Z503Y)

50 m measurement cable coiled onto a plastic drum. Connection to the inside end of the cable is made possible with two sockets integrated into the drum. The other end is equipped with a banana plug.
Cable resistance can be compensated for with the rotary selector switch in the R_{LO} position.

SP500Earth Drill (Z503Z)

E-SET PROFESSIONAL (Z592Z)

E-SET BASIC (Z593A)

Accessory Cases and Trolleys

SORTIMO L-BOXX GM (Z503D)

Plastic system case Outside dimensions: $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$
$450 \times 255 \times 355 \mathrm{~mm}$
Foam insert Z503E for tester and accessories, has to be ordered seperately, see below.

Foam insert for SORTIMO L-BOXX GM (Z503E)

Profi-Case (Z502W)

Outside dimensions
$H \times W \times D$
$390 \times 590 \times 230 \mathrm{~mm}$

PROFITEST MTECH+, Mpro, Mxtra, SECULIFE Ilp DIN VDE 0100/IEC 60364-6 Testers

E-CHECK Case (Z502M)

Outside dimensions:
$H \times W \times D$
$390 \times 590 \times 230 \mathrm{~mm}$

Sample Contents

F2000 Universal Carrying Pouch (Z700D)

Outside dimensions:
$\mathrm{W} \times \mathrm{H} \times \mathrm{D}$
$380 \times 310 \times 200 \mathrm{~mm}$ (without buckles, handle and carrying strap)

F2020 Large Universal Carrying Pouch (Z700F)

Outside dimensions:
$\mathrm{W} \times \mathrm{H} \times \mathrm{D}$
$430 \times 310 \times 300 \mathrm{~mm}$
(without buckles,
handle and carrying strap)

Trolley for Profi-Case (Z502B) and E-CHECK Case (Z502N)
Folded-up dimensions: $395 \times 150 \times 375 \mathrm{~mm}$

Ever-ready case for PROFITEST MASTER (Z502X)

PROFITEST Mtech+, Mpro, Mxtra, SECULIFE Ilp
 DIN VDE 0100/IEC 60364-6 Testers

E-Mobility Accessories

PRO-TYP I (Z525B)

PRO-TYP II (Z525A)

Vehicle Simulation (CP)
Vehicle states A through E are selected with a rotary switch.
Cable Simulation (PP)
The various codings for charging cables with $13,20,32$ and 63 A , as well as "no cable connected", can be simulated with the help of a rotary switch.
Fault Simulation
Simulation of a shortcircuit between CP and
PE by means of a rotary switch
Indication of Phase Voltages via LEDs
Depending on the charging station, either one or three phases can be active.
Testing of electrical charging stations with permanently connected charging cable due to extended CP test pin

PROFITEST Mtech+, Mpro, Mxtra, SECULIFE Ilp DIN VDE 0100/IEC 60364-6 Testers

Order Information

Designation	Type	Article Number
PROFITEST MASTER Instrument Variants		
Universal protective measures test instrument per EN 61557, sections 1, 2, 3, 4, 5, 6, 7 and 10 with integrated memory and insulation measurement up to 1000 V as well as selective earth measurement with current clamps as optional accessories, with DAkkS calibra tion certificate and IZYTRONIQ BUSINESS Starter	PROFITEST MPRO IQ	M535C
Universal protective measures test instrument per EN 61557, sections 1, 2, 3, 4, 5, 6, 7 and 10 with integrated memory and insulation measurement up to 1000 V as well as additional tripping test for $\mathrm{AC} / \mathrm{DC}$ sensitive RCDs and loop impedance measurement without tripping the RCD, e-mobility test, Bluetooth interface, DAkkS calibration certificate and IZYTRONIQ BUSINESS Starter	PROFITEST MTECH + IQ	M535B
Universal protective measures test instrument per EN 61557, sections 1, 2, 3, 4, 5, 6, 7 and 10 with integrated memory and insulation measurement up to 1000 V as well as additional tripping test for $\mathrm{AC} / \mathrm{DC}$ sensitive RCD , loop impedance measurement without tripping the RCD, selective earth measurement with current clamps as optional accessories, testing of IMDs and RCMs, Bluetooth interface, DAkkS calibration certificate and IZY TRONIQ BUSINESS Starter	$\begin{aligned} & \text { PROFITEST MX- } \\ & \text { TRA IQ } \end{aligned}$	M535D
Universal protective measures test instrument per EN 61557, sections 1, 2, 3, 4, 5, 6, 7 and 10 with integrated memory and insulation measurement up to 1000 V as well as additional tripping test for AC/DC sensitive RCDs and loop impedance measurement, testing of IMDs, Bluetooth interface, DAkkS calibration certificate and IZYTRONIQ BUSINESS Starter	SECULIFE IP IQ	M535E
Test Instrument Power Supply Accessories		
8 LSD NiMH rechargeable batteries with reduced self-discharging (AA), with sealed cells	MASTER Battery Set	Z502H
Broad-range charger for charging batteries included in the PROFITEST MTECH+, MPRO, MXTRA and SECULIFE IP Input: 100 to 240 V AC Output: 16.5 V DC, 1 A	PROFITEST MAS- TER Charger	Z502R
Accessory Plug Inserts and Adapters		
Holder for test probes and measuring adapter	PRO-HB	2501V
Earth contact plug insert (Schuko): D, A, NL, F etc.	PRO-Schuko	GTZ3228000R0001
same as PRO-Schuko, however with angled earth-contact plug	PRO-W	Z503A
Plug insert per SEV: CH	PRO-CH	GTZ3225000R0001
Plug insert with adapters for GB \& USA	PRO-GB/USA-Set	Z503B
Plug insert for South Africa	PRO-RSA	Z501A
3 -phase test adapter for PROFITEST MTECH + $1 Q$ and MXTRA IQ	PROFITEST REMOTE	M514R
2/3-pole measuring adapter for 3-phase and rotating-field systems, 300 V/1 A CAT IV with safety cap 600 V/1 A CAT III with safety cap 600 V/16 A CAT II without safety cap	PRO-A3-II	Z5010
same as PRO-A3-II, however with straight cables of 10 m each instead of coil cables	PRO-A3-II ncc	Z503C
Set-Probes CAT III / $600 \mathrm{~V}, 1$ A, working range of the probes 68 mm - diameter $2,3 \mathrm{~mm}$	Set-Probes	Z503F

Designation	Type	Article Number
Safety Clip red and blue with hock, 1 kV CAT IV, 20 A	Safety Clip	Z503W
Flat test clip for fast and safe contacting on busbars. Powerful contacting on the front and rear of the busbars by means of established Multilam. Fixed $\emptyset 4 \mathrm{~mm}$ socket in the pressure grip handle section, to fit spring-loaded $\emptyset 4 \mathrm{~mm}$ plugs with rigid insulating sleeve. 1000 V CAT IV/32 A	PRO-PE Clip	Z503G
2 magnetic measurement contacts with contact protection - Set with magnetic holder, measurement contacts $5,5 \mathrm{~mm}$ in diameter insulated, CAT IIII $1.000 \mathrm{~V} / 4 \mathrm{~A}$, temperature between $-10^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$, under standard conditions and flat-head screws holding force 1.200 g vertical to contact area; measuring instrument connector: 4 mm sockets for PRO-A3-II	Set 3 - Magn. Measuring Tips	Z502Z
With 10 m cable based on 2-wire measuring technology for PE and similar measurements, $300 \mathrm{~V} /$ 16 A CAT IV	PRO-RLO-II	Z501P
With 3 connector cables for any connection standards, $300 \mathrm{~V} / 16 \mathrm{~A}$, CAT IV	PRO-UNI-II	Z501R
5-pole 3-phase adapter for 16 A CEE outlets	A3-16	GTZ3602000R0001
5-pole 3-phase adapter for 32 A CEE outlets	A3-32	GTZ3603000R0001
5-pole 3-phase adapter for 63 A CEE outlets	A3-63	GTZ3604000R0001
Three-phase adapter shielded, 7-pin for CEE socket outlets 16 A, CAT III $300 \mathrm{~V}-10 \mathrm{~A}$	A3-16 Shielded	Z513A
Three-phase adapter shielded, 7-pin for CEE socket outlets 32 A, CAT III $300 \mathrm{~V}-10 \mathrm{~A}$	A3-32 Shielded	Z513B
Variable Plug Adapter Set	Z500A	Z500A
Calibration adapter for testing of the accuracy of measuring instruments for insulation resistance and lowvalue resistors	ISO Calibrator 1	M662A
Leakage current measuring adapter for PROFITEST MXTRA and SECULIFE IP	PRO-AB	Z502S
Accessories		
Extension cable, 4 m	KS24	GTZ3201000R0001
Telescoping rod for RLO and RISO measurement, CAT III 600 V / CAT IV 300 V, 1 A, retracted/extended $53,3 \mathrm{~cm} / 120 \mathrm{~cm}, 190 \mathrm{~g}$	TELEARM $120{ }^{\text {D }}$	Z505C
Telescoping rod for RLO and RISO measurement, CAT III 600 V / CAT IV 300 V, 1 A, retracted/extended $73,5 \mathrm{~cm} / 180 \mathrm{~cm}, 250 \mathrm{~g}$	TELEARM $180^{\text {D }}$	Z505D
Case TELEARM for Telearm 120/180, 920 x 170 mm	Case TELEARM	Z505E
Triangular probe for floor measurements in accordance with EN 1081 and DIN VDE 0100	1081 Probe	GTZ3196000R0001
Current clamp sensor for leakage current, switchable: 1 mA to $15 \mathrm{~A}, 3 \%$ and 1 A to 150 A, 2\%	WZ12C ${ }^{\text {D }}$	Z219C
Flexible AC current sensor, 3, 30, $300 \mathrm{~A}, 1 \mathrm{~V}$, $100 \mathrm{mV}, 10 \mathrm{mV} / \mathrm{A}$, with batteries, probe length: 45 cm	METRAFLEX P300	Z502E
Accessory Cases and Trolleys		
Ever-ready case with bags for accessories	Ever-ready Case PROFITEST MASTER	Z502X
Aluminum case for test instrument and accessories	E-CHECK Case	Z502M
The E-CHECK case can be mounted to the trolley.	Trolley for E-CHECK Case	Z502N
Universal carrying pouch	F2000 ${ }^{\text {D }}$	Z700D
Large universal carrying pouch	F2020	Z700F
Plastic system case	$\begin{aligned} & \text { SORTIMO L-BOXX } \\ & \text { GM } \end{aligned}$	Z503D

PROFITEST MTECH+, Mpro, Mxtra, SECULIFE Ilp DIN VDE 0100/IEC 60364-6 Testers

Designation	Type	Article Number
Foam insert for SORTIMO L-BOXX GM with divider for PROFITEST MASTER	Foam SORTIMO L-BOXX Profitest M	Z503E
Profi-hardcase with imprint and deviders for sets with Profitest Master and accessories incl. trolleyholder	Profi-Case	Z502W
Earthing Resistance Measurement Access		
Measuring adapter for connecting a second clamp (generator clamp), allows for 2-clamp measuring method (ground loop measurement)	PRO-RE-2	Z502T
Connection adapter for earthing accessories for 3/4-wire measurement and selective earthing resistance measurement	PRO-RE	Z501S
Generator clamp for 2-clamp measuring method (ground loop measurement), transformation ratio: $1000 \mathrm{~A} / 1 \mathrm{~A}$, current measuring range: 0.2 A to 1200 A , output signal: 0.2 mA to 1.2 A	E-CLIP 2	Z591B
Current clamp sensor for selective earth measurement and as clamp meter for 2-clamp measuring method (ground loop measurement), switchable measuring ranges: 0 to 1 / 100 / 1000 A~ AV~ \pm (0.7% to 0.2%)	Z3512A ${ }^{\text {D }}$	Z225A
Cable reel for low-resistance and earth-resistance measurement, 25 m	TR25II	Z503X
Cable reel for low-resistance and earth-resistance measurement, 50 m	TR50II	Z503Y
Earth Drill 500 mm	SP500	Z503Z
Accessories for earthing measurement consisting of 1 carrying pouch, 4 earth spikes 500 mm , 1 x measuring lead 40 m blue on cable drum with hand strap, $1 \times$ measuring lead 20 m red on cable drum with hand strap, $1 \times$ measuring lead 5 m black, 1 x measuring lead 5 m green, 1 x test clamp with black 4 mm socket, 1 x test clamp with green 4 mm socket, $1 \times$ hammer, 1 x roller tape measure, 1 x duster, 1 x writing pad with pen	$\begin{aligned} & \text { E-SET } \\ & \text { PROFESSIONAL } \end{aligned}$	Z592Z
Accessories for earthing measurement consisting of 1 rugged outdoor carrying pouch, 2 earth spikes $420 \mathrm{~mm}, 1 \mathrm{x}$ measuring lead 40 m blue on cable drum with hand strap, 1 kV CAT III, 1 x measuring lead 20 m red on cable drum with hand strap, 1 kV CAT III, 1 x measuring lead 2 m black, 1 kV CAT IV, 1 x measuring lead 2 m green, 1 kV CAT IV, 1 x measuring lead 30 cm red, 1 kV CAT IV, 1 x measuring lead 30 cm blue, 1 kV CAT IV, 1 x test clamp with black 4 mm socket, 1 x test clamp with green 4 mm socket	E-SET BASIC	Z593A
Earth testing set: 1 drum with 25 m measurement cable 2 drums with 50 m measurement cable each, 4 measurement cables, $3 \times 0.5 \mathrm{~m}$ long, $1 \times 2 \mathrm{~m}$ long, 1 test clamp, 4 earth drills, each 350 mm long, 1 dust cloth, 2 pads of earth testing measurement data forms	E-Set 5	Z590B

Designation	Type	Article Number		
Test adapter for testing portable safety switches (types PRCD-K and PRCD-S) with the help of the PROFITEST MXTRA test instrument				
(not included)			\quad PROFITEST PRCD D	M512R
:---				
Starter Packages				

${ }^{\mathrm{D}}$ Data sheet available
For additional information regarding accessories please refer to:

- our Measuring and Test Technology catalog
- www.gossenmetrawatt.com

[^1]GOSSEN METRAWATT
Gossen Metrawatt GmbH
Südwestpark 15
90449 Nürnberg • Germany

Phone +499118602-0
Fax +49911 8602-669
E-Mail info@gossenmetrawatt.com
www.gossenmetrawatt.com

[^0]: 1 So-called live measurement is only advisable if there is no bias current within the system. Only suitable for motor circuit breaker with low nominal current.
 2 Currently available languages: D, GB, I, F, E, P, NL, S, N, FIN, CZ, PL

[^1]: © Gossen Metrawatt GmbH
 Edited in Germany • Subject to change without notice / Errors excepted • A PDF version is available on the Internet
 All trademarks, registered trademarks, logos, product names and company names are the property of their respective owners.

