GOSSEN METRAWATT

R2900

Compact Controller, $96 \times 96 \mathrm{~mm}$

ContentsPage
Safety Features and Precautions 3
Maintenance4Product Support
Device Identification 5
Data Interface 6
Mechanical Installation / Preparation 6
Electrical Connection
Performance After Activating Auxiliary Voltage 10
Operation 11
Operating Flowchart, "Discontinuous-Action Controller" 12
Operating Flowchart, "Discontinuous-Action Controller" with Differential Control 13
Operating Flowchart,
"Continuous-Action and Step-Action Controllers" 14
Operating Flowchart, "Cont.-Action and
Step-Action Controller" with Diff. Control 15
Off / Manual Operation 16
Manual Operation with Binary Input 17
PWR Out Offset with Binary Input 17
Configuration 18
Saving and Loading Device Settings: 21
Differential Controller 21
Slave Controller 21
Controller Sorts 22
Configuration of the Controller with Continuous Output (desig. A7 and A8) 23
Parameters Configuration 24
Balancing 263 Manual Self-Tuning28
Repair and Replacement Parts Service 4 Setpoint Ramps 318 Error Messages
Heating Current Monitoring 32
Heating Circuit Monitoring 32
Limit Value Monitoring 33
Alarms 3334
27
Self-Tuning
0 Technical Data 36
Meanings of symbols on the instrument

Indicates EC conformity
Continuous doubled or reinforced insulation

Warning concerning a source of danger Attention: observe documentation!

Functional earth terminal, earthing for functional purposes only (no safety function)

The device may not be disposed of with the trash. Further information regarding the WEEE mark can be accessed on the Internet at www.gossenmetrawatt.com under the search term WEEE

Safety Features and Precautions

The R2900 controller is manufactured and tested in accordance with safety regulations IEC 61010-1 / DIN EN 61010-1 / VDE 0411-1.
If used for its intended purpose, safety of the user and of the device is assured.

Read the operating instructions completely and carefully before using the device, and follow all instructions included therein. The operating instructions should be made available to all users.

Observe the following safety precautions:

- The device may only be connected to electrical systems which comply with the specified nominal range of use (see circuit diagram and serial plate), and which are protected with a fuse or circuit breaker with a maximum nominal current rating of 16 A .
- The installation must include a switch or a circuit breaker which serves as a disconnecting device.

The controller may not be used:

- If visible damage is apparent
- If it no longer functions flawlessly
- After lengthy periods of storage under unfavorable conditions (e.g. humidity, dust, temperature)

In such cases the device must be removed from service and secured against any possible inadvertent use.

Maintenance

Housing

No special maintenance is required for the housing. Keep outside surfaces clean. Use a slightly dampened cloth for cleaning. Avoid the use of solvents, cleansers and abrasives.

Repair and Parts Replacement

Repairs and the replacement of parts conducted at a live open instrument may only be carried out by trained personnel who are familiar with the dangers involved.

Repair and Replacement Parts Service

When you need service, please contact:

```
GMC-I Service GmbH
Service-Center
Beuthener Strasse 41
90471 Nürnberg • Germany
Phone +49 911 817718-0
Fax +49911 817718-253
E-Mail service@gossenmetrawatt.com
```

This address is only valid in Germany.
Please contact our representatives or subsidiaries for service in other countries.

Product Support

When you need support, please contact:

Gossen Metrawatt GmbH
Product Support Hotline
Phone +49 911 8602-500
Fax +499118602-340
E-Mail support@gossenmetrawatt.com

Device Identification

Data Interface

Refer to operating instructions 3-349-204-15 for detailed information regarding the data interface.

Mechanical Installation / Preparation $\mathbb{\wedge}$

Variants
A1 ... A6, D0, F0

Panel Cutout

Variant A7, A8 or D1, or F1

The R2900 controller is intended for installation to a control panel. The installation location should be vibration-free to the greatest possible extent. Aggressive vapors shorten the service life of the controller. Requirements set forth in VDE 0100 must be observed during the performance of all work. Work on the device may only be carried out by trained personnel who are familiar with the dangers involved.

Set the housing into the panel cutout from the front, and secure it from behind at the left and right-hand sides with the two included screw clamps. Typical tightening torque amounts to 10 Ncm , and a value of 20 Ncm should not be exceeded.

In general, unobstructed air circulation must be assured when one or several devices are installed. The ambient temperature underneath the devices may not exceed $50^{\circ} \mathrm{C}$.

Figure 1, Housing Dimensions and Panel Cutout

- Push in direction 1 all the way up to the limit stop
- Push in direction 2 all the way up to the limit stop

Figure 2, Securing the Housing

Electrical Connection

EN 55022 requires the following warning as regards electromagnetic compatibility:

Warning

This is a class A device. It may cause radio interference in residential surroundings. If this is the case, the operator may be required to implement appropriate corrective measures.

Connectors: Screw terminals for wire with a cross section of 1.5 square mm or two-core wire-end ferrules with a cross-section of 2×0.75 square mm

Tighten screws with a manual screwdriver only! Tightening torque for all screw terminals: max. 0.6 Nm

Figure 3, Connector Terminal Positions

Performance After Activating Auxiliary Voltage

Operation

Up and down scrolling keys for value selection

Figure 4, Controls

Value Selection

The selected value can be changed using the up and down scrolling keys.
The selected value is saved to memory and becomes active after 2.5 seconds, or after pressing the key. The display goes dark briefly to indicate activation of the selected value.

Operating Flowchart, "Discontinuous-Action Controller"

Operating Flowchart, "Discontinuous-Action Controller" with Differential Control

Operating Flowchart, "Continuous-Action and Step-Action Controllers"

Operating Flowchart, "Cont.-Action and Step-Action Controller" with Diff. Control

Off / Manual Operation

OPERATING LEVEL, DISCONTINUOUS-ACTION CONTROLLER

- No alarm function
- No indication of errors

- The actuator outputs are inactive as long as the keys are not activated.
- When the or key is activated, switching output I ("heat") or II ("cool") is triggered directly.

OPERATING LEVEL, CONTINUOUS-ACTION

 STEP-ACTION CONTROLLERS- Alarm function and error indication identical to automatic operating mode.
- The actuator outputs are controlled with the and keys and not by the controller function.
- Switching between manual and automatic modes is bumpless in both directions.
- Continuous-action controller:

Manipulating factor is displayed in \%. Values are changed with the and keys, and are forwarded immediately to the control outputs.

- Step-action controller:

Switching output I (more) or II (less) is triggered directly by pressing the or key. If position acknowledgement is utilized (designations A5 and A6), the measured position is displayed as a percentage, and bars are displayed for all other designations.

Manual Operation

Manual Operation with Binary Input

Switching to manual operation is possible via the binary input (terminals 5 and 6).
This is distinguished from off / manual operation with the 111 key as follows:

- Bumpless switching to manual operation with all controller sorts
- The last manipulating factor is "frozen" for step-action controllers as well.
- The last switching status is retained for limit transducers.
- Operation and display are identical to automatic operation, except that the 111 LED lights up and the manipulating factor can be changed in the manipulating factor display with the 1 and keys.
- When configured as a step-action or a continuous-action controller (controller sort set to 2 through 5), the 45 t parameter must be set to 0 .
- The "alarm 2" configuration digit must be set to a value of $8 \ldots F$ to this end (see also [nF己 on page 20).

PWR Out Offset with Binary Input

When configured as a step-action or a continuous-action controller (controller sort set to 2 through 5), control quality can be significantly improved by means of PWR out offset where abrupt load fluctuations prevail.

- When the contact at the binary input is closed, the controller's manipulating factor is increased by an amount equaling $\zeta 5 t$.
- It is reduced by the same value when the contact is opened.
- No function during self-tuning
- Where $45 t=0$, the binary input activates manual operation (see above).
- The "alarm 2" configuration digit must be set to a value of $8 \ldots \mathrm{~F}$ to this end (see also $[n F 2$ on page 20).

Example:
If a machine requires an average of 70% heating power during production operation, but only 10% during idle time, the difference of $\zeta 5$ t is set to 60%, and the binary input is only activated during production.

Configuration

	Controller Sort		Alarm 1			
Code		Code		Actuation Suppression	Contact	Heating Circuit Monitoring
0	Limit transducer	0	Relative		NO contact	Inactive
1	Actuator	1	Absolute	Inactive		
2	2-step controller, heat *)	2	Relative	Active		
\exists	2-step controller, cooling *)	\exists	Absolute	Active		
4	3 -step controller *)	4	Relative	Inactive	NC contact	
5	3-step controller, water cooling	5	Absolute	Inactive		
6	Step-action controller	6	Relative	Active		
$\frac{\sqrt{2}}{4}$	() Settings for continuous-action controller: see page 23	7	Absolute			
		θ	Relative	Inactive	NO contact	Active
		9	Absolute			
	8	A	Relative	Active		
		b	Absolute	Active		
		[Relative	Inactive	NC contact	
	EnF』	d	Absolute	Inactive		
		E	Relative	Active		
		F	Absolute			

Gray highlighting: default setting KO

[^0]
Configuration (continued)

Gray highlighting: default setting KO

Saving and Loading Device Settings:

Code	Function	1 Comment
d	Current settings ${ }^{1 /}$ are saved as user-defined default settings.	A configuration per customer specifications (K9) is stored here, and is overwritten in the process.
E	User-defined default settings ${ }^{11}$ are loaded. If settings have not already been saved with d in the past, the factory default settings or a configuration per customer specifications (K9) is loaded.	All entries, including self-tuning and calibration results, are overwritten in the process.
F	Factory default settings ${ }^{1)}$ are loaded.	

${ }^{17}$ The configuration digits and all parameters except for the interface address Rddr

Differential Controller Parameters: see page 24

- Actual value difference, i.e. $1^{\text {st }}$ actual value $-2^{\text {nd }}$ actual value, is regulated to the selected differential setpoint.
- The differential setpoint can be set within a range of \pm one half of the measuring range.
- Limit value monitoring is relative to actual value difference, and not the two actual values.
- If an attempt is made at the operating level to change the differential setpoint (display mode: $1^{\text {st }}$ actual value $/ 2^{\text {nd }}$ actual value), no appears briefly at the bottom display.

Slave Controller

Parameters: see page 24

- The external setpoint which is applied to the $2^{\text {nd }}$ measurement input replaces the internal setpoint.
- The setpoint ramp function (see page 31) is retained.
- After switching to setpoint 2 via the binary input, the controller becomes a fixed setpoint controller using setpoint $2(5 P$ 己).
- Upper and lower limits for the external setpoint are scaled with the rnL and rnH parameters ($2^{\text {nd }}$ measurement input, standard signal for designation B4).
- The SPL and SPH parameters limit the external setpoint for control and display purposes.
- If an attempt is made at the operating level to change the setpoint (display mode: actual value / setpoint), no appears briefly at the bottom display.

Controller Sorts

Code	Controller Sort	Comment
0	Limit transducer	Switching output I is active where actual value < current setpoint, and switching output II is active where actual value > current setpoint + dbnd. Switching hysteresis is equal to HSSt. Switching status changes are possible once per $t c$.
1	Actuator	Read-out of a constant actuating signal to switching output I where $\zeta 5 t>0$, or switching output Il where $\zeta \mathrm{St}<0$. The actuating cycle is equal to at least $t c$. No alarm functions.
2	2-step controller, "heat"	A harmonic-free PDPI control algorithm regulates switching output I in order to increase / decrease the actual value. The actuating cycle is equal to at least $t c$.
\exists	2-step controller, "cooling"	
4	3-step controller	A harmonic-free PDPI control algorithm regulates switching output I in order to increase the actual value, or switching output II in order to decrease the actual value. The actuating cycle is equal to at least $t c$. The dead band dbnd suppresses switching back and forth between "heating" and "cooling" if no lasting deviation occurs.
5	3-step controller, water cooling	The manipulating factor at switching output II is adapted to the non-linear performance characteristics of a water cooler. The actuating cycle is equal to $t c$.
6	Step-action controller	A harmonic-free PDPI control algorithm regulates switching output I or II in order to increase or decrease the actual value. The duration of the actuating impulse is equal to $t c$. The dead band dbad is symmetric to the setpoint.

Configuration of the Controller with Continuous Output (desig. A7 and A8)

- Continuous output = actual value ("sensor U/M / continuous output" configuration digit $=0,1,2,3$)
- The controller sorts demonstrate the same performance characteristics as with designations A1 to A4.
- Read-out of the actual value (actual value difference for differential controllers) is scaled with the rnL and raH parameters.
- Continuous output = manipulating factor ("sensor U/M / continuous output" configuration digit $=4,5,6,7$)
- Switching output I is inactive.
- The various continuous controller sorts result from the "controller sort" configuration digit:

Code	Controller Sort	Comment
\square	Limit transducer	Read-out of a manipulating factor which can be adjusted with the $Ч H$ parameter where actual value < setpoint
1	Actuator	Read-out of a manipulating factor which can be adjusted with parameter $45 t$.
ح	Continuous controller with falling characteristic curve	A harmonic-free PDPI control algorithm regulates the continuous output every 0.5 seconds. An output filter assures smoothest possible actuating signal characteristics. $t c$ is used to set the time constant for an additional actual value filter.
\exists	Continuous controller with rising characteristic curve	
4	Split range controller	Continuous controller with falling characteristic curve for positive manipulating factors (increase actual value). Negative manipulating factors are read out via switching output II (decrease actual value). The actuating cycle for switching output II has a duration of at least $t c$. The dead band dbad suppresses rapid switching back and forth between the continuous output and switching output II if no lasting deviation occurs.
5,6		No practically relevant function

- Continuous output = "select with Cont" ("sensor U/M / continuous output" configuration digit = 8, 9, A, b)

Cont	Cont. Output	Comment
\mathbf{O}	Current setpoint	The read-out is scaled with the $r n \mathrm{~L}$ and $\ulcorner\mathrm{nH}$ parameters (the current differential setpoint for differ- ential controllers). The controller sorts demonstrate the same performance characteristics as with designations A1 to A4.
\mathbf{I}	"Cooling" manip. factor	Negative manipulating factors are read out continuously, and switching output II remains inactive. Controller sort = 4: split range controller with inverted output performance

Parameters Configuration

$\mathrm{X} 1=$ lower range limit， $\mathrm{X} 2=$ upper range limit， $\mathrm{MR}=\mathrm{X} 2-\mathrm{X} 1$

Parameter	Display	Range	Default	Comment
Upper limit value for relay A1	HL IH	oFF， 1 ．．．MR oFF，X1 ．．．X2	$\begin{aligned} & \text { oFF } \\ & \text { oFF } \end{aligned}$	Relative（＝default config．） Absolute
Lower limit value for relay A1	HL IL			
Upper limit value for relay A2	HLコH			
Lower limit value for relay A2	HLEL			
Setpoint 2	ऽロ コ	5PL ．．．5PH	X1	
Ramp for rising setpoints		oFF， $1 . .$. MR per min．	0FF	
Ramp for falling setpoints	¢ロ』п	OFF， $1 . .$. MR per min．	oFF	
Heating current setpoint （see Balancing）	Нアワ5	Auto，oFF，0．1 ．．． A H	0FF	Not with step－action control－ lers ${ }^{1)}$
Proportional band heating	Pロ i	0.1 ．．．999．9\％	10.0	
Proportional band cooling	Pロ if	0.1 ．．．999．9\％	10.0	Only with 3－step controllers ${ }^{2}$ ）
Dead band	dロாd	0 ．．．MR	0	Not with 2－step controllers ${ }^{3)}$
Path delay time	L－	$0 . . .9999$ s	100	
Read－out cycle time	LE	$0.5 \ldots 600.0$ s	10.0	4）
Motor run－time	늬	$5 . . .5000$ s	60	Only with step－action control－ lers ${ }^{5)}$
Switching hysteresis	Hப5L	0 ．．．1．5\％MR	0．5\％MR	For limit value monitoring and limit transducers
Maximum setpoint	$5 \square \quad H$	SPL ．．．X2	X2	
Minimum setpoint	$5 \square 1$	X1．．．5PH	X1	
Maximum manipulating factor	$4 \quad H$	－100 ．．． 100%	100	
Actual value correction （see Balancing）	EHL	（Auto），－MR／4 ．．．＋MR／ 4	0	Only with designations B1， B3 and B4
Decimal point position	回ロL	9999，999•9，99•99，9•999	9999	Only with designation B2
Upper range limit，standard signal		rnL．．． 9999	100	Only with designations
Lower range limit，standard signal		－1500 ．．．rnH	0	B2，B4，A7 and A8

Parameter	Display	Range	Default	Comment
Upper range limit, heating current (see Balancing)	H H	1.0 ... 99.9 A	42.7	Not with step-action controllers ${ }^{1)}$
Calibration, position acknowledgement	$\begin{aligned} & 4187 \\ & 46 \end{aligned}$	See Balancing		Only with step-action controllers with position acknowledgement ${ }^{6)}$
Manipulating factor for actuator mode, or for PWR out offset	4 5L	-100 ... 100\%	0	
Sensor error manipulating factor	45 L	-100 ... 100\%	0	
Continuous signal	EロחL	See page 23	0	Only for designations A7 and A8
Interface address	Addr	$0 . . .250$	250	Only with designation F1

" Only where:"controller sort" configuration digit $\neq 6$ and designation \neq A5, A6
2) Only where:"controller sort" configuration digit $=4$ or 5
3) Only where:"controller sort" configuration digit $=0,4,5$ or 6
${ }^{4)}$ Additional actual value filter for continuous-action controllers (controller sort $=2$ or 3), $\boldsymbol{t c}=$ time constant
5) Only where:"controller sort" configuration digit $=6$
${ }^{6)}$ Only where:"controller sort" configuration digit $=6$ and designation $=A 5, A 6$

Parameters Pb I through Addr are disabled for the operator during self-tuning.

Balancing

Thermocouple Correction (parameter: $\angle A L$)
The correction value is selected in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$. The displayed correction value is added to the measured temperature.

Cable Compensation for Pt 100 with 2-Wire Connection (parameter: [AL)
The correction value can be determined automatically in the "Off / manual operation" mode:

- Short circuit the sensor at the measuring point.
- Set the CAL value to Ruto.

Measured cable resistance is converted to temperature change and is entered as the CRL value.
Balancing can also be performed manually if the sensor temperature is known:
CAL = known sensor temperature - displayed temperature value

Scaling for Heating Current Monitoring (parameter: $A \mathrm{H}$)

The default setting for the GTZ 4121 is 42.7 A. If the GTZ 4121 current transformer is not used for acquiring heating current, the current value must be selected at which the utilized transformer generates an output voltage of 10 VDC .

Calibrating the Position Acknowledgement Display (parameter: Ч IOD, ૫ 〕)
Calibration is performed in the manual operating mode at the parameter level with the device configured as a step-action controller ("controller sort" configuration digit = 6):

1. Select parameter 4100 . The stored value appears at first: a standardized value between 0 and 255. The scroll up key - controls switching output I directly (more), and the currently measured actuator position appears at the display. The scroll up key - must be pressed and held until the displayed value no longer fluctuates. The displayed value is saved to memory.
2. Select parameter 40 . Same procedure as for parameter 4100 . In this case, the scroll down key must be pressed and held. It controls switching output II directly (less).
4100 must be greater than 40 !
The 4100 and 40 parameters are displayed only in the automatic operating mode.

Self-Tuning

Self-tuning is used to achieve optimized controller dynamics, i.e. parameters Pb I, Pb II, tu and tc are determined.
Read-out cycle time tc is not changed during self-tuning.
We recommend for t_{c} a value of $t u / 12$ to guarantee satisfactory controller dynamics. When controlling contactors, tc should be adequately increased.

Preparation

- Complete configuration must be performed before self-tuning is started.
- The setpoint value is adjusted to the value which is required after self-tuning.

Start

- Briefly press the matic or manual / off operating mode) in order to trigger self-tuning. Selftuning cannot be started in the "actuator" or "limit transducer" mode.
- tun l...tun日 blinks at the display at all operating levels during self-tuning.
- The controller is switched to the automatic operating mode after self-tuning has been successfully completed.
- In the case of 3-step controllers (controller sorts 4 and 5), cooling is activated if the upper limit value is exceeded in order to prevent overheating. Self-tuning then performs an oscillation test around the setpoint.

Sequence

- The setpoint which is active when tuning is started remains valid and can no longer be changed (slave controllers: changing external setpoints are only displayed).
- Activation or deactivation of setpoint 2 does not become effective.
- Selected setpoint ramps are not taken into consideration.
- If started at the operating point (actual value approximates the setpoint value), overshooting cannot be avoided.

Abort

- Self-tuning can be aborted at any time with the keys (\rightarrow automatic operating mode), or by switching to manual / off with the 111 key.
- If an error occurs during self-tuning, the controller no longer reads out an actuating signal. Self-tuning must be aborted in this case.
Additional information regarding error messages upon request.

Manual Self-Tuning

Parameters Pb I, Pb II, tu and tc are determined by means of manual self-tuning in order to maintain optimized controller dynamics. An actuation test or an oscillation test is performed to this end.

Preparation

- Complete configuration (page 18) and parameter settings (page 24) must first be entered for use of the controller.
- The actuators should be deactivated with the off / manual operation function (page 16).
- A recorder must be connected to the sensor and adjusted appropriately to prevailing circuit dynamics and the setpoint.
In the case of differential controllers, the actual value difference must be recorded.
- For 3-step or split range controllers, on and off-time must be recorded for switching output I or the continuous output (e.g. with an additional recorder channel or a stopwatch).
- Configure as limit transducer (controller sort = 0).
- Set read-out cycle time to the minimum value: $t c=0.5$.
- If possible, deactivate manipulating factor limiting. $5 H=100$.
- Reduce (or increase) the setpoint so that overshooting and undershooting do not cause any impermissible values.

Performing the Actuation Test

- $\quad d$ bnd $=$ MR \quad Setting for 3-step and split range controllers (switching output II may not be triggered) dbad $=\mathbf{0} \quad$ Setting for step-action controllers (switching output II must be triggered)
- Start the recorder.
- Activate the actuators with automatic operation.
- Record two overshoots and two undershoots.

The actuation test is now complete for 2-step, continuous-action and step-action controllers.
Continue as follows for 3-step and split range controllers:

- Set dbnd to 0 in order to cause further overshooting with active switching output II. Record two overshoots and two undershoots.
- Record on-time T_{\mid}and off-time $T_{\| \mid}$at switching output I or the continuous output for the last oscillation.

Evaluating the Actuation Test

- Apply a tangent to the curve at the intersection of the actual value and the setpoint, or at the cut-off point of the output.
- Measure time $\Delta \mathrm{t}$.
- Measure oscillation amplitude \mathbf{x}_{SS}, or overshooting for step-action controllers $\Delta \mathbf{x}$.

Parameter	Parameter Values					
	2-step controller	3-step controller	Continuous-action controller	Split range controller	Step-action controller	
tu	1.5 • $\Delta \mathrm{t}$				Δt - (t / 4)	
tc	tu/12 ${ }^{1 /}$				EY / 100	
Pb I	$\left(\mathrm{x}_{\text {SS }} / \mathrm{MR}\right) \cdot 100 \%$		$\left(\mathrm{x}_{\text {SS }} / \mathrm{MR}\right) \cdot 200 \%$		($\Delta x / \mathrm{MR}$) • 50 \%	
Pb II	-	Pb 1• $\left(T_{1} / \mathrm{T}_{11}\right)$	-	Pb l• ($\left.\mathrm{T}_{1} / \mathrm{T}_{\\|}\right)$	-	

1) When controlling contactors, $t c$ should be adequately increased.

If manipulating factor limiting was active, the proportional band must be corrected:

$$
\begin{array}{ll}
\text { பH positive: } & \text { Pb I multiply by } 100 \% / \text { பH } \\
\text { ЧH negative: } & \text { Pb } / 1 \text { multiply by }-100 \% / \text { பH }
\end{array}
$$

Performing the Oscillation Test

If an actuation test is not possible, for example if neighboring control loops influence the actual value too greatly, if switching output II must be active in order to maintain the actual value (cooling operating point), or if optimization is required directly to the setpoint for any given reason, control parameters can be determined by means of sustained oscillation. However, calculated values for tu may be very inaccurate in this case under certain circumstances.

- Preparation as described above. The test can be performed without a recorder if the actual value is observed at the display, and if times are measured with a stopwatch.
- $\quad d b n d=0 \quad$ Setting for 3-step, split range and step-action controllers
- Activate the actuators with automatic operation, and start the recorder if applicable. Record several oscillations until they become uniform in size.
- Measure oscillation amplitude $\mathbf{x}_{S S}$.
- Record on-time T_{\mid}and off-time $\mathrm{T}_{\| \mid}$at switching output I or the continuous output for the oscillations.

Evaluating the Oscillation Test

Parameter	Parameter Values									
	2-step controller	3-step controller	Continuous-action controller	Split range controller	Step-action controller					
tu ${ }^{11}$	$0.3 \cdot\left(T_{1}+T_{11}\right)$				$0,2 \cdot\left(T_{1}+\mathrm{T}_{\\| \mid}-2 t \zeta\right)$					
tc	tu/12 ${ }^{2)}$				ty / 100					
Pb 1	$\frac{x_{S S} \cdot 100 \%}{M R}$	$\frac{x_{S S} \cdot T_{\\|} \cdot 100 \%}{M R\left(T_{j}+T_{\\|}\right)}$	$\frac{x_{S S} \cdot 200 \%}{M R}$	$\frac{x_{S S} \cdot T_{\\| \\|} \cdot 200 \%}{M R\left(T_{j}+T_{\\|}\right)}$	$\frac{\mathrm{x}_{\mathrm{SS}} \cdot 50 \%}{\mathrm{MR}}$					
Pb II	-	Pb 1• ($\left.T_{1} / T_{1 \mid}\right)$	-	Pb 1•($\left.T_{1} / T_{\\| 1}\right)$	-					

[^1]Correction for step-action controllers in the event that $T_{\text {o }}$ or $T_{| |}$is smaller than $t \Psi$:

The value for $t u$ is very inaccurate in this case. It should be optimized in the closed loop control mode.

Closed Loop Control Mode

The closed loop control mode is started after self-tuning has been completed:

- Configure the desired control algorithm with controller sort.
- Adjust the setpoint to the required value.
- The dead band can be increased from dbnd $=\mathbf{0}$ for 3 -step, split range and step-action controllers if control of switching output I (or the continuous output) and II changes too rapidly, for example due to an unsteady actual value.

Setpoint Ramps

Setpoint display The targeted setpoint is displayed (not the currently valid setpoint) with a blinking r at

Function
Activation

Limit values

Parameters 5 Pu $^{\text {P }}$ and 5Pdn cause a gradual temperature change (rising / falling) in degrees per minute.

- When auxiliary power is switched on
- When the current setpoint is changed
- When setpoint 2 is activated
- After switching from manual to automatic operation the left-hand digit.
Relative limit values make reference to the ramp, not the targeted setpoint. As a rule, no alarm is triggered for this reason.

Heating Current Monitoring

Function

AПPS current setpoint

Heating current is acquired with an external transformer (e.g. GTZ 4121).
An alarm is triggered if the current setpoint is fallen short of by more than 20% with activated heat (control output I active), or if current is not "off" when the heat is switched off. The alarm is not triggered until heating current is high enough when output I is active, or when current drops to zero when output I is inactive.
Monitoring is inactive if the controller is switched to oFF, as well as in the case of continuous and step-action controllers.

Heater phase current is entered for this parameter. AПP5 can be set to Ruto for automatic adjustment with the heater switched on. The measured current value is saved to memory.

Heating Circuit Monitoring

Function

- Can be set to active or inactive with the "alarm" configuration digit (see Configuration).
- Without external transformer, without additional parameters
- Assumes correct optimization of t_{u} and Pb I control parameters, i.e. heating circuit monitoring must be activated before self-tuning is started. In the event of manual optimization or subsequent adaptation of control parameters, the lower limit value for the tu parameter must be observed:
minimum $t u=\frac{P b /}{50 \%} \cdot \frac{\mathrm{MR}}{\Delta \vartheta / \mathrm{Dt}}$
$\Delta \vartheta / D t=$ maximum temperature rise during actuation
- Error message $L E$ appears after approximately 2 times $t u$, if heat remains on at 100% and measured temperature rise is too small.
- Monitoring is not active:
where controller sort = limit transducer, actuator or step-action controller
during self-tuning
with standard signal input (designation B 2)
where manipulating factor limiting $4 \mathrm{H}<20 \%$

Limit Value Monitoring

Actuation suppression: Alarm suppression remains inactive during actuation (configuration digit "alarms 1 and 2 ") until temperature has exceeded the lower limit value for the first time. During cooling, suppression is active until temperature has fallen below the upper limit value for the first time. Suppression is active when auxiliary power is activated, if the current setpoint is changed or setpoint 2 is activated, or if switching takes place from off to automatic operation.

Alarms

Blinking Display (at operating level only)	Error Message Source	Display	Response	Comment
Heating current	Heating current monitoring	LED A1 blinks	Alarm output A1 and LED A1 are activated ${ }^{1)}$	N0 / NC contact selected in configuration digits
Actual value	Limit value monitoring 1	LED A1 blinks	Alarm output A1 and LED A1 are activated ${ }^{1)}$	"alarms 1 and 2"
Actual value	Limit value monitoring 2	LED A2 blinks	Alarm output A2 and LED A2 are activated ${ }^{2)}$	LED blinks at all levels

${ }^{7}$) Only for designation D1
${ }^{2)}$ In the case of designation DO and configuration as a 2-step controller
The display is switched to the operating level 30 seconds after value selection has been completed during configuration or parameter setting.

Error Messages

Responses in the event of an error:

1. Alarm output A1 is activated, output performance is determined by the "alarm 1" configuration digit (see Configuration on page 18).
In the case of designation D0 and configuration as a 2-step controller, read-out takes place at switching output II. The LED lights up when relay contact II is closed and/or transistor output II is active.
2. LED A1 blinks at all levels. The (blinking) error message only appears at the operating level: in the event of faulty measured values at the display, at which the error-free measured value is otherwise displayed (5EH, $5 E L, L E$ and $U E)$ when other error messages appear in the upper display.
3. The display is switched to the operating level 30 seconds after value selection has been completed during configuration or parameter setting.
4. Exceptions and additional information are included in the following table:

Disp			Error Message Source	Response			Remedy	
SE H		sensor error high	Broken sensor or actual value greater than upper range limit	Ctr. Sort	Manipulating Factor Read-Out		1	
		$45 E=-100 / 0 / 100 \%$			YSE $=-100 / 0 / 100 \%$			
$5 E$	\underline{L}		sensor error low	Sensor polarity reversed or actual value less than lower range limit	2 or 3-step	-100/0/100\%		If the controller has settled in: last "plausible" manipulating factor, if not: SSE
		Step			YSE			
		On/off ctr.						
		Actuator			No res	onse to error		
EE		current error	Current transformer has reversed polarity, is unsuitable or defective	Same as heating current monitoring alarm Continues to control temperature			2	
UE		y error	Position ackn. incorrectly calibrated, Ч $100 \leq 40$	No response to error			3	
Tロ	\underline{L}	no tune	Self-tuning cannot be started (controller sort: "actuator" or "limit transducer")	No response to error Error message is not cleared until key is pressed			-	

$\left.\begin{array}{|l|l|l|l|c|}\hline \text { Display } & & \text { Error Message Source } & \text { Response } & \text { Remedy } \\ \hline \boldsymbol{L E} & \text { tune error 2 } & \begin{array}{l}\text { Disturbance in } \\ \text { self-tuning sequence in } \\ \text { steps 1 through 13 (step } \\ \text { 2 in this case) }\end{array} & \begin{array}{l}\text { Control outputs I and II inactive } \\ \text { Self-tuning must be aborted. }\end{array} & 4 \\ \hline \boldsymbol{L E} & \text { loop error } & \begin{array}{l}\text { Measured temperature } \\ \text { rise is too small with } \\ \text { heat on at 100\% }\end{array} & \begin{array}{l}\text { Control outputs I and II inactive. } \\ \text { Error message is not cleared until } \\ \text { and held. }\end{array} & \text { key is pressed }\end{array}\right] 5$

Remedies

1. Eliminate sensor error.
2. Inspect current transformer.
3. Check for correct connection of the position acknowledgement potentiometer and re-calibrate.
4. Avoid disturbances which impair the self-tuning sequence, e.g. sensor errors.
5. Close the control loop: Check the sensor, the actuators and the heater for correct functioning.

Check sensor-heater assignments (wiring).
Correctly optimize control parameters tu and Pb I.
6. Restore default configuration and default parameters, and then reconfigure, or load user-defined default settings.
7. Arrange for repair at authorized service center.

Technical Data

Annual mean relative humidity, no condensation	75%
Ambient temperature	
\quad Nominal range of use	$0^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
Operating range	$0^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
Storage range	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

Aux. Voltage	Nominal Ranges of Use		Power Consumption
Nominal Value	Voltage	Frequency	
AC 110 V /	AC $95 \mathrm{~V} \ldots 253 \mathrm{~V}$	$48 \mathrm{~Hz} \ldots 62 \mathrm{~Hz}$	Max. 10 VA AC 230 V
typically 6 W			

Relay Output	Floating, normally open contact
Switching capacity	AC/DC $250 \mathrm{~V}, 2 \mathrm{~A}, 500 \mathrm{VA} / 50 \mathrm{~W}$
Service life	$>2 \bullet 10^{5}$ switching cycles at nominal load
Interference suppression	Utilize external RC element ($100 \Omega-47 \mathrm{nF}$) at contactor

Transistor output suitable for commercially available semiconductor relays (SSR)			
Switching Status	Open-Circuit Voltage	Output Current	
Active (load $\leq 800 \Omega$)	$<$ DC 17 V	$10 \ldots 15 \mathrm{~mA}$	
Inactive	$<$ DC 17 V	$<0.02 \mathrm{~mA}$	
Overload limit	Short-circuit, continuous interruption		

Electrical Safety	
Safety class	II, panel-mount device, DIN EN 61010-1 section 6.50.4
Fouling factor	1, per DIN EN 61010-1 section 3.7.3.1 and IEC 664
Overvoltage category	II, per DIN EN 61010 appendix J and IEC 664
Operating voltage	300 V per DIN EN 61010
EMC requirements	IEC/EN 61326

For complete technical data refer to the following data sheet: order no. 3-349-202-03Gossen Metrawatt GmbH
Prepared in Germany • Subject to change without notice / Errors excepted • A pdf version is available on the Internet

All trademarks, registered trademarks, logos, product names and company names are the property of their respective owners.

Phone +49 911 8602-111
Fax +49911 8602-777
E-mail info@gossenmetrawatt.com
www.gossenmetrawatt.com

[^0]: 1) Switching to and from ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$ is only effective for designations $\mathrm{B} 1, \mathrm{~B} 3$ and B 4 .
 2) Only effective for designations A7 and A8
[^1]: 1) If either T_{l} or $T_{\| \mid}$is significantly greater than the other, value $t u$ is too large.
 2) When controlling contactors, $t c$ should be adequately increased.

 Correction with manipulating factor limiting
 பH positive: $\quad \mathrm{Pb}$ I multiply by $100 \% / 乌 H$
 ЧH negative: Pb II multiply by -100% / பH

